【题目】如图,在△中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以的速度向点运动,设运动时间为秒
(1)当为何值时,.
(2)当为何值时,∥.
(3)△能否与△相似?若能,求出的值;若不能,请说明理由.
【答案】(1)秒;(2)秒;(3)能,秒或5秒
【解析】
(1)分别用x表示出线段BP和CQ的长,根据其相等求得x的值即可;
(2)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.
(3)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.
(1)依题意可得:BP=20-4x,CQ=3x
当BP=CQ时,20-4x=3x
∴(秒)
答:当秒时,BP=CQ
(2)AP=4x,AB=20,AQ=30-3x,AC=30
所以当时,有
即:
解得:x=(秒)
答:当x=秒时,;
(3)能.
①当△APQ∽△CQB时,有
即:
解得:x=(秒)
②当△APQ∽△CBQ时,有
即:
解得:x=5(秒)或x=-10(秒)(舍去)
答:当x=秒或x=5秒时,△APQ与△CQB相似.
科目:初中数学 来源: 题型:
【题目】一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)直接写出一次函数的值小于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:
①abc>0;
②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;
③2a+b=0;
④4a2+2b+c<0,
其中正确结论的序号为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是一次函数的图象与反比例函数的图象的两个交点
(1)求此反比例函数和一次函数的解析式.
(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表:
售价(元/千克) | 45 | 50 | 55 |
销售量(千克) | 110 | 100 | 90 |
(1)求与之间的函数表达式,并写出自变量的范围;
(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.
(1)求证:BE=CE;
(2)若AB=6,求弧DE的长;
(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系中,∠ACB=90°,AC=BC,A的坐标是(0,m)(m<0),点C的坐标是(2,0),点B在x轴上方.
(1)如图1所示,若点B在y轴上,则m的值是 ;
(2)如图2所示,BC与y轴交于点D.
①若m=﹣6,求点B的坐标;
②若y轴恰好平分∠BAC,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别 | 频数(人数) | 频率 |
武术类 | 0.25 | |
书画类 | 20 | 0.20 |
棋牌类 | 15 | b |
器乐类 | ||
合计 | a | 1.00 |
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=_____,b=_____;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com