精英家教网 > 初中数学 > 题目详情

【题目】将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A60°,∠B30,∠D45°.

1)若∠BCD45°,求∠ACE的度数.

2)若∠ACE150°,求∠BCD的度数.

3)由(1)、(2)猜想∠ACE与∠BCD存在什么样的数量关系并说明理由.

【答案】1)∠ACE=135°;(2)∠BCD30°;(3)∠ACE与∠BCD互补.理由见解析.

【解析】

1)先求得∠ACD的度数,即可得到∠ACE的度数;

2)先求得∠ACD的度数,即可得到∠BCD的度数;

3)依据∠BCD=∠ACB﹣∠ACD90°﹣∠ACD,∠ACE=∠DCE+ACD90°+ACD,即可得到∠ACE与∠BCD互补.

解:(1)∵∠BCD45°,∠ACB90°,

∴∠ACD=∠ACB﹣∠DCB45°,

又∵∠DCE90°,

∴∠ACE=∠ACD+DCE45°+90°=135°;

2)∵∠ACE150°,∠DCE90°,

∴∠ACD=∠ACE﹣∠DCE150°﹣90°=60°,

又∵∠ACB90°,

∴∠BCD=∠ACB﹣∠ACD90°﹣60°=30°;

3)由(1)、(2)猜想∠ACE与∠BCD互补.

理由:∵∠BCD=∠ACB﹣∠ACD90°﹣∠ACD

ACE=∠DCE+ACD90°+ACD

∴∠BCD+ACE90°﹣∠ACD+90°+ACD180°,

∴∠ACE与∠BCD互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(

A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形

B.当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形

C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形

D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知abc满足: (1)5(a+3)+2|b2|=0 (2)xy+2ab+c+1是七次多项式;

求多项式ab[ab(2abcac3ab)4ac]abc的值..

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17121520170726179

1)这组数据的中位数是   ,众数是   

2)计算这10位居民一周内使用共享单车的平均次数;

3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合实践

问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.

操作探究:

⑴若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?

⑵如图2是小明的设计图,把它折成无盖正方体形纸盒后与字相对的是哪个字?

⑶如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.

①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.

②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为 cm,底面积为 cm2,当小正方形边长为4cm时,纸盒的容积为 cm3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一抛物线与x轴的交点是A﹣20),B10),且经过点C28).

1)求该抛物线的解析式.

2)求该抛物线的顶点坐标.

3)直接写出当y8时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填入表示它所在的数集的括号里

﹣(﹣2.3),0,﹣30%π,﹣|2013|,﹣5

1)负整数集合[   …]

2)正有理数集合[   …]

3)分数集合[   …]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB的平分线ON上依次取点C,F,M,过点CDEOC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则yx之间的函数关系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县第一届运动会需购买AB两种奖品,若购买A种奖品4件和B种奖品3件,共需85元;若购买A种奖品3件和B种奖品1件,共需45元.

1)求AB两种奖品的单价各是多少元?

2)运动会组委会计划购买AB两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买总费用W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并设计出购买总费用最少的方案.

查看答案和解析>>

同步练习册答案