分析 (1)由正方形的性质得出∠A=∠D=90°,AB=DC,由SAS证明△ABM≌△DCM,得出对应边相等即可;
(2)证明EN是△BCM的中位线,得出EN=$\frac{1}{2}$CM=FM,EN∥FM,证出四边形MENF是平行四边形,同理:NF是△BCM的中位线,得出NF=$\frac{1}{2}$BM,证出EN=NF,即可得出结论;
(3)证明△ABM是等腰直角三角形,得出∠AMB=45°,同理∠DMC=45°,得出∠EMF=90°,即可得出结论.
解答 (1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,AB=DC,
∵M是AD的中点,
∴AM=DM,
在△ABM和△DCM中,$\left\{\begin{array}{l}{AB=DC}&{\;}\\{∠A=∠D}&{\;}\\{AM=DM}&{\;}\end{array}\right.$,
∴△ABM≌△DCM(SAS),
∴BM=CM;
(2)解:四边形MENF是菱形;理由如下:
∵E、N、F分别是线段BM、BC、CM的中点,
∴EN是△BCM的中位线,
∴EN=$\frac{1}{2}$CM=FM,EN∥FM,
∴四边形MENF是平行四边形,
同理:NF是△BCM的中位线,
∴NF=$\frac{1}{2}$BM,
∵BM=CM,
∴EN=NF,
∴四边形MENF是菱形;
(3)解:当AD:AB=2:1时,四边形MENF是正方形;理由如下:
∵AD:AB=2:1,M是AD的中点,
∴AB=AM,
∴△ABM是等腰直角三角形,
∴∠AMB=45°,
同理:∠DMC=45°,
∴∠EMF=180°-45°-45°=90°,
由(2)得:四边形MENF是菱形,
∴四边形MENF是正方形;
故答案为:2:1.
点评 本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、等腰直角三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com