精英家教网 > 初中数学 > 题目详情

【题目】如图,点Ax轴负半轴上的一个动点,点Cy轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(04),设点A的坐标为A(n0),连接OD,当OD时,n_____

【答案】-2

【解析】

先求得ODy轴的夹角为45°,然后依据OD的长,可求得OFDF的长,作辅助线,构建全等三角形,再证明AFD≌△DEC,从而可得到AFDE3,从而可得到点A的坐标.

解:如图所示:过点DEFx轴于F,过CCEEFE

∵四边形ABCD为正方形,

ABCD四点共圆,∠DAC45°

又∵∠COA90°

∴点O也在这个圆上,

∴∠COD=∠CAD45°

又∵OD

OFDF1

C(04)

OCEF4

DE413

∵四边形ABCD为正方形,

ADCD

∵∠ADC90°

∴∠ADF+CDE=∠CDE+DCE90°

∴∠ADF=∠DCE

∵∠AFD=∠DEC90°

∴△AFD≌△DEC(SAS)

AFDE3

AO2

A(20),即n=﹣2

故答案为:﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个直角三角形纸片OAB,其中AOB=90°,OA=2OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D

1)若折叠后使点B与点A重合,求点C的坐标;

2)若折叠后点B落在边OA上的点为B,设OB′=xOC=y,试写出y关于x的函数解析式,并确定y的取值范围;

3)若折叠后点B落在边OA上的点为B,且使BD//OB,求此时点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数yx的图象与反比例函数y的图象交于Aa,-2),B两点.

1)求反比例函数的表达式和点B的坐标;

2P是第一象限内反比例函数图象上一点,过点Py轴的平行线,交直线AB于点C,连接PO,若POC的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,点DBC中点,∠EDF两边分别交线段AB于点E,交线段AC于点F,且∠EDF+BAC180°

1)如图1,当∠EDF90°时,求证:BEAF

2)如图2,当∠EDF60°时,求证:AE+AFAD

3)如图3,在(2)的条件下,连接EF并延长EF至点G,使FGEF,连接CG,若BE5CF4,求CG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________________;S矩形AEFG:S□ABCD=__________

(2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;

(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出AD、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点EEFBC,分别交BD、CDG、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

对这30个数据按组距3进行分组,并整理、描述和分析如下.

频数分布表

组别

销售额

频数

7

9

3

2

2

数据分析表

平均数

众数

中位数

20.3

18

请根据以上信息解答下列问题:

(1)填空:a=  ,b=  ,c=  

(2)若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;

(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y=(x0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点AADx轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是______

查看答案和解析>>

同步练习册答案