精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中ab,c分别为ABC三边的长.

(1)如果x=-1是方程的根,试判断ABC的形状,并说明理由;

(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由.

【答案】(1)ABC是等腰三角形,理由见解析;(2)ABC是直角三角形.理由见解析.

【解析】

试题(1)由方程解的定义把x=﹣1代入方程得到a﹣b=0,即a=b,于是由等腰三角形的判定即可得到△ABC是等腰三角形;

2)由判别式的意义得到△=0,整理得,然后由勾股定理的逆定理得到△ABC是直角三角形.

试题解析:解:(1△ABC是等腰三角形.理由如下:

∵x=﹣1是方程的根,a+c×1﹣2b+a﹣c=0∴a+c﹣2b+a﹣c=0∴a﹣b=0∴a=b∴△ABC是等腰三角形;

2△ABC是直角三角形.理由如下:

方程有两个相等的实数根,∴△=∴△ABC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________;

(2)拓展:用转化思想求方程=x的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为5cm的等边三角形,点PQ分别从顶点AB同时出发,沿线段ABBC运动,且它们的速度都为1cm/s.当点P到达点B时,PQ两点停止运动,设点P的运动时间为ts).

1)当t为何值时,PBQ是直角三角形?

2)连接AQCP,相交于点M,则点PQ在运动的过程中,CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为,与轴的一个交点在之间,其部分图象如图所示,则下列结论:

是该抛物线上的点,则为任意实数).

其中正确结论的个数是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某活动小组为了估计装有个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做次试验,汇总起来后,摸到红球次数为次.

估计从袋中任意摸出一个球,恰好是红球的概率是多少?

请你估计袋中红球接近多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点AB以及直线lAEl,垂足为点E

1)过点BBFl,垂足为点F

2)在直线l上求作一点C,使CACB

(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)

3)在所作的图中,连接CACB,若∠ACB90°,求证:△AEC≌△CFB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在ABCAEF中,点EBC边上,AEABACAF,∠CAF=∠BAEEFAC交于点G

1)求证:EFBC

2)若∠ABC65°.∠ACB28°,求∠FGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC⊙OB,垂足为O,连接ABOC于点D∠CAD=∠CDA

1)判断AC⊙O的位置关系,并证明你的结论;

2)若OA=5OD=1,求线段AC的长.

查看答案和解析>>

同步练习册答案