【题目】某公司有型产品40件,型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.甲、乙两商店销售、型产品每件的利润如下表:
型产品利润(元/件) | 型产品利润(元/件) | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
设分配给甲店型产品件,公司卖出这100件产品的总利润为元.
(1)求与的函数关系式;
(2)求总利润的取值范围;
(3)为了促销,公司决定对甲店销售型产品让利元/件,且让利后仍高于甲店销售型产品的每件利润,请问为何值时,总利润最大?
【答案】(1);(2)总利润的取值范围是;(3)①当时,总利润达到最大;②当时,总利润都一样大;③当时,总利润达到最大
【解析】
(1)首先设甲店B型产品有(70-x),乙店A型有(40-x)件,B型有(x-10)件,列出不等式方程组求解即可;
(2)根据w的增减性可得:当x=40时,w有最大值,代入可得结论;
(3)甲店A型产品的利润变为(200-a)元,其它不变,则w=(20-a)x+16800.根据a<30分类讨论可得最大值.
(1)依题意,分配给甲店A型产品x件,则甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有{30-(40-x)}件即(x-10)件,则.
(2)在中,
∵由题意得:
,
∴,
∵,
∴随的增大而增大,
∴当时,有最大值,最大值为,
当时,有最小值,最小值为,
∴总利润的取值范围是.
(3)依题意知:,
∵,,
∴.
①当时,,随的增大而增大,
∴当时,总利润达到最大.
②当时,,,符合题意的各种方案中,总利润都一样大.
③当时,,随的增大而减小,
∴当时,总利润达到最大.
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:
a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).
b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如图2,在b的基础上,画出扇形统计图:
d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的复工率的平均数、中位数、众数如下:
日期 | 平均数 | 中位数 | 众数 |
截止到2020年3月1日 | 80.79 | m | 50,90 |
请解答以下问题:
(1)依据题意,补全频数分布直方图;
(2)扇形统计图中50<x≤60这组的圆心角度数是 度(精确到0.1).
(3)中位数m的值是 .
(4)根据以上统计图表简述国内企业截止3月1日的复工率分布特征.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中国班列”开通后,我国与欧洲各国经贸往来日益频繁.某欧洲列国客商准备在湖北采购一批特色商品,经调查,用16000元采购A型商品的件数是7500元采购B型商品的件数的2倍.一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B商品的进价分别为多少元
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A 型商品的件数不大于B型的件数且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,求该客商售完所有商品后获得的最大收益.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=.
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使三角形PAC是等腰三角形?若存在,请求出P点坐标;不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.
(1)求证:AC是⊙O的切线;
(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com