【题目】如图,以OA为边的△OAB面积为2,其中点B的横、纵坐标均不超过4,且都不小于0,在下列叙述中,正确的是:_____.(请写出所有正确的选项)
①若点B的横坐标是4,则满足条件的点B有且只有1个;
②若点B是整点(即横、纵坐标都是整数),则满足条件的点B有4个;
③在坐标系内,对于任意满足题意的点B,一定存在一点C,使得△CAB、△COA、△COB面积相等;
④在坐标系内,存在一个定点D,使得对于任意满足条件的点B,△DBA、△DBO面积相等.
科目:初中数学 来源: 题型:
【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度数;
(2)求证:CG平分OCD;
(3)当O为多少度时,CD平分OCF,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△ PAC为等边三角形,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中点A、B在坐标轴上,其中A(0,a),B(b,0),满足|a﹣3|+=0.
(1)求点A、B的坐标;
(2)将AB平移到CD,点A对应点C(﹣2,m),若△ABC面积为13,连接CO,求点C的坐标;
(3)在(2)的条件下,求证:∠AOC=∠OAB+∠OCD;
(4)如图2,若AB∥CD,点C、D也在坐标轴上,点F为线段AB上一动点(不包含A、B两点),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试证明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校在疫情期间利用网络组织了一次防“新冠病毒”知识竞赛,评出特等奖10人,优秀奖20人.学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.
(1)(列方程组解应用题)若特等奖和优秀奖的奖品分别是口罩和温度计,口罩单价的2倍与温度计单价的3倍相等,购买这两种奖品一共花费700元,求口罩和温度计的单价各是多少元?
(2)(利用不等式或不等式组解应用题)若两种奖品的单价都是整数,且要求特等奖单价比优秀奖单价多20元.在总费用不少于440而少于500元的前提下,购买这两种奖品时它们的单价有几种情况,请分别求出每种情况特等奖和优秀奖奖品的单价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com