【题目】如图1,在平面直角坐标系中点A、B在坐标轴上,其中A(0,a),B(b,0),满足|a﹣3|+=0.
(1)求点A、B的坐标;
(2)将AB平移到CD,点A对应点C(﹣2,m),若△ABC面积为13,连接CO,求点C的坐标;
(3)在(2)的条件下,求证:∠AOC=∠OAB+∠OCD;
(4)如图2,若AB∥CD,点C、D也在坐标轴上,点F为线段AB上一动点(不包含A、B两点),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试证明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的结论).
【答案】(1)A(0,3),B(4,0);(2)C(﹣2,﹣2);(3)详见解析;(4)详见解析.
【解析】
(1)利用非负数的性质求解即可.
(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.根据S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN构建方程求解即可.
(3)利用平行线的性质,三角形的外角的性质求解即可.
(4)如图2中,延长AB交CP的延长线于M.首先证明∠BCD=3(∠CPF﹣∠OFP),再利用结论∠FOC=∠OFB+∠BCD,求解即可.
解:(1)∵|a﹣3|+=0,
又∵|a﹣3|≥0,≥0,
∴a=3,b=4,
∴A(0,3),B(4,0).
(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.
∵S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN,
∴13=(3+3﹣m)(4+2)﹣×2×(3﹣m)﹣×3×4,
解得:m=﹣2,
∴C(﹣2,﹣2).
(3)如图1中,设CD交y轴于T.
∵AB∥CD,
∠BAO=∠ATO,
∵∠AOC=∠OCD+∠CTO,
∴∠AOC=∠OCD+∠BAO.
(4)如图2中,延长AB交CP的延长线于M.
∵AM∥CD,
∴∠DCM=∠M,
∵∠BCP=2∠PCD,
∴∠BCD=3∠DCM=3∠M,
∵∠M=∠FPC﹣∠MFP,∠MFP=∠OFP,
∴∠BCD=3(∠CPF﹣∠OFP),
∵∠FOC=∠OFB+∠BCD,
∴∠FOC=2∠OFP+3∠CPF﹣3∠OFP,
∴∠FOC=3∠CPF﹣∠OFP.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD=∠BED.
(1)求证:BC是⊙O的切线;
(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程 有两个不相等的实数根,
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
进价元千克 | 售价元千克 | |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A点的坐标为(﹣1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,﹣1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以OA为边的△OAB面积为2,其中点B的横、纵坐标均不超过4,且都不小于0,在下列叙述中,正确的是:_____.(请写出所有正确的选项)
①若点B的横坐标是4,则满足条件的点B有且只有1个;
②若点B是整点(即横、纵坐标都是整数),则满足条件的点B有4个;
③在坐标系内,对于任意满足题意的点B,一定存在一点C,使得△CAB、△COA、△COB面积相等;
④在坐标系内,存在一个定点D,使得对于任意满足条件的点B,△DBA、△DBO面积相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有实数根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.
(1)求证:OE⊥DC.
(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com