| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由四边形ABCD是矩形,易证得△ADQ≌△ADE,即可得DQ=DE;利用等角的余角相等,可得∠BAP=∠AQE正确,又因为∠AQD不一定等于∠PQC,故AQ⊥PQ不能确定,DQ与CP的值没法确定,EQ=2CP不一定正确;易证得△ADE∽△PCE,即可得DE•PC=EC•AD,即可得S△APQ=S矩形ABCD.
解答 解:∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADQ=∠ADE=90°,
在△ADQ和△ADE中,
$\left\{\begin{array}{l}{∠PAD=∠QAD}\\{AD=AD}\\{∠ADQ=∠ADE}\end{array}\right.$,
∴△ADQ≌△ADE(ASA),
∴DQ=DE;故①正确;
∵∠BAP+∠PAD=∠AQE+∠QAD=90°,∠PAD=∠QAD,
∴∠BAP=∠AQE,故②正确;
∵当∠AQD=∠PQC时,可得∠AQP=90°,
∴此两角的值不能确定,故③错误;
∵DQ=DE,
∴EQ=2DQ,
∵DQ与CP不一定相等,故④错误;
∵AD∥BC,
∴∠DAE=∠CPE,
∵∠AED=∠PEC,
∴△ADE∽△PCE,
∴AD:PC=DE:CE,
∴DE•PC=EC•AD,
∵S△APQ=S△AEQ+S△PEQ=$\frac{1}{2}$QE•AD+$\frac{1}{2}$QE•PC=DE•AD+DE•PC
S矩形ABCD=S△ADE+S四边形ABCE=$\frac{1}{2}$DE•AD+$\frac{1}{2}$(EC+AB)•BC=$\frac{1}{2}$DE•AD+$\frac{1}{2}$(DE+2EC)•AD=$\frac{1}{2}$DE•AD+$\frac{1}{2}$DE•AD+EC•AD=DE•AD+EC•AD,
∴S△APQ=S矩形ABCD.故⑤正确.
故选B.
点评 此题考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、直角三角形的性质以及三角形面积的求解方法.此题综合性较强,难度较大,注意数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3037米 | B. | 2727米 | C. | 2273米 | D. | 1963米 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com