分析 (1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=8cm,根据垂径定理得出DF=$\frac{1}{2}$CD=6cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.
解答 (1)证明:连结OA.![]()
∵OA=OD,
∴∠ODA=∠OAD.
∵DA平分∠BDE,
∴∠ODA=∠EDA.
∴∠OAD=∠EDA,
∴EC∥OA.
∵AE⊥CD,
∴OA⊥AE.
∵点A在⊙O上,
∴AE是⊙O的切线.
(2)解:过点O作OF⊥CD,垂足为点F.
∵∠OAE=∠AED=∠OFD=90°,
∴四边形AOFE是矩形.
∴OF=AE=8cm.
又∵OF⊥CD,
∴DF=$\frac{1}{2}$CD=6cm.
在Rt△ODF中,OD=$\sqrt{O{F^2}+D{F^2}}$=10cm,
即⊙O的半径为10cm.
点评 本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5.166×107 | B. | 5.166×108 | C. | 51.66×106 | D. | 0.5166×108 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com