精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=2x2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为(
A.y=2(x+1)2+5
B.y=2(x+1)2﹣5
C.y=2(x﹣1)2﹣5
D.y=2(x﹣1)2+5

【答案】D
【解析】解:∵将抛物线y=2x2向右平移1个单位,再向上平移5个单位,
∴平移后的抛物线的解析式为:y=2(x﹣1)2+5.
故选:D.
【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一个运算程序的示意图,若开始输入的x值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2017次输出的结果为( )

A.1
B.3
C.9
D.27

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若m>n,下列不等式不一定成立的是(
A.m﹣2>n﹣2
B.
C.m2>n2
D.2m+1>2n+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【发现证明】

如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,试判断BEEFFD之间的数量关系.

小聪把ABE绕点A逆时针旋转90°ADG,通过证明AEF≌△AGF;从而发现并证明了EF=BE+FD

【类比引申】

1)如图2,点EF分别在正方形ABCD的边CBCD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EFBEDF之间的数量关系,并证明;

【联想拓展】

2)如图3,如图,∠BAC=90°AB=AC,点EF在边BC上,且∠EAF=45°,若BE=3EF=5,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家发现:学生对提出概念的接受能力y与提出概念的时间xmin)之间满足二次函数关系y=﹣0.1x2+2.6x+43.则使学生对概念的接受能力最大.则提出概念的时间应为(  )

A. 13minB. 26minC. 52minD. 59.9min

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式

(2)求出对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,将绕点顺时针旋转得到,当点三点共线时,旋转角为,连接,交于点。下面结论:为等腰三角形;中,正确的是(  )

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,AB是⊙O的弦,点E是弧AB的中点,连结OE,交AB于点D,再连结CD,若tan∠CDB=,则AB与DE的数量关系是( )

A. AB=2DE B. AB=3DE C. AB=4DE D. 2AB=3DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四点与点(-2,6)连接成的线段中,与x轴和y轴都不相交的是( )

A. (-4,2) B. (3,-1) C. (4,2) D. (-3,-1)

查看答案和解析>>

同步练习册答案