精英家教网 > 初中数学 > 题目详情
已知等腰三角形两边长分别为5和8,求底角的正切值.
考点:解直角三角形,等腰三角形的性质
专题:
分析:先确定等腰三角形的腰长,分两种情况讨论,当腰长为5和腰长为8时,作底边的高,构成直角三角形,然后根据锐角三角函数的定义求解.
解答:解:(1)当等腰三角形ABC的腰长为5,底边长8时,
作底边BC的高AD,则BD=CD=4,
在Rt△ADB中,∵∠ADB=90°,AB=5,BD=4,
∴AD=3,
∴tan∠B=
AD
BD
=
3
4


(2)当等腰三角形ABC的腰长为8,底边长5时,
作底边BC的高AD,则BD=CD=
5
2

在Rt△ADB中,∵∠ADB=90°,AB=8,BD=
5
2

∴AD=
231
2

∴tan∠B=
AD
BD
=
231
2
5
2
=
231
5

综上可知,底角的正切值为
3
4
231
5
点评:本题考查了解直角三角形、等腰三角形的性质、勾股定理以及锐角三角函数的定义,此题综合性较强,难度适中,易于掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

正方形(空白部分)的面积等于30cm2,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC=90°,在边AC上取一点D,连接BD,使得∠BDA=∠BAD,过点C作CE⊥BD,交BD的延长线于点E,过点A作AF⊥BD于点F,过点D作DG⊥BC于点G.求证:CE=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

黄豆发芽后,其自身的质量可以增加7倍,那么要得到黄豆芽240kg,需要黄豆
 
kg.

查看答案和解析>>

科目:初中数学 来源: 题型:

线段AB和AC在一条直线上,若E为AB的中点,F为AC的中点.
(1)如果AB=6cm,AC=10cm,求EF的长;
(2)如果BC=16cm,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=(a-1)x2开口向上,抛物线y=(2a-3)x2开口向下,且抛物线y=(a-1)x2比抛物线y=(2a-3)x2开口大,则a的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆锥的母线长是35,它的侧面展开图是圆心角为216°的扇形,那么这个圆锥的(  )
A、底面半径是15
B、高是26
C、侧面积是700π
D、底面积是441π

查看答案和解析>>

科目:初中数学 来源: 题型:

已知6x+8y=33,2x+y=6,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,PA=4,PB=5,PC=6,求PD的长度.

查看答案和解析>>

同步练习册答案