精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上.圆心在P(a,b),半径为r的圆的方程可以写为:(x-a)2+(y-b)2=r2.如:圆心在P(2,-1),半径为5的圆的方程为:(x-2)2+(y+1)2=25.

(1)填空: ①以A(3,0)为圆心,1为半径的圆的方程为:________; ②以B(-1,-2)为圆心, 为半径的圆的方程为:________;

(2)根据以上材料解决以下问题:

如图2,B(-6,0)为圆心的圆与y轴相切于原点,C是☉B上一点,连接OC,BDOC垂足为D,延长BDy轴于点E,已知sinAOC=.

①连接EC,证明EC是☉B的切线;

②在BE上是否存在一点P,使PB=PC=PE=PO,若存在,P点坐标,并写出以P为圆心,PB为半径的☉P的方程;若不存在,说明理由.

【答案】(1)①方程为:(x-3)2+y2=1;②方程为:(x+1)2+(y+2)2=3.(2)①证明见解析;②存在,证明见解析.

【解析】(1)根据阅读材料中的定义求解;

(2)①根据垂径定理由BD⊥OC得到CD=OD,则BE垂直平分OC,再根据线段垂直平分线的性质得EO=EC,则∠EOC=∠ECO,

加上∠BOC=∠BCO,易得∠BOE=∠BCE=90°,然后根据切线的判定定理得到EC是⊙B的切线;

②由∠BOE=∠BCE=90°,根据圆周角定理得点C和点O偶在以BE为直径的圆上,即当P点为BE的中点时,满足PB=PC=PE=PO,利用同角的余角相等得∠BOE=∠AOC,则sin∠BOE=sin∠AOC=,在Rt△BOE中,利用正弦的定3义计算出BE=10,利用勾股定理计算出OE=8,则E点坐标为(0,8),于是得到线段AB的中点P的坐标为(﹣3,4),PB=5,然后写出以P(﹣3,4)为圆心,以5为半径的⊙P的方程.

解:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;

②以B(﹣1,﹣2)为圆心, 为半径的圆的方程为(x+1)2+(y+2)2=3;

故答案为(x﹣3)2+y2=1;(x+1)2+(y+2)2=3;

(2)①连接BC.

∵OB=BC,BD⊥OC,∴∠OBD=∠CBD.

又∵BE=BE,

∴△BOE≌△BCE,

∴∠BCE=∠BOE.

∵AO⊥OE,∴∠BCE=90°.

∴EC是☉B的切线.

②存在.

取BE的中点P,连接PC,PO.

∵△BCE和△BOE是直角三角形,

∴PC=BE,PO=BE,

∴PC=PB=PO=PE.

过P作PM⊥x轴于M,PN⊥y轴于N.

∵P是BE中点,∴OM=OB,ON=OE.

∵∠AOC+∠EOC=90°,∠BEO+∠EOC=90°,

∴∠AOC=∠BEO.

∵sin∠AOC=,∴sin∠BEO=.

=,即=,∴BE=10.

由勾股定理:OE==8,

P(-3,4),PB==5.

∴☉P的方程为(x+3)2+(y-4)2=25.

“点睛”本题了圆的综合题:熟练掌握垂径定理、切线的判定定理、圆周角定理和等腰三角形的性质;阅读理解能力也是本题考查的重点;会运用锐角三角函数的定义和勾股定理进行几何计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个角补角比它的余角的2倍多30°,这个角的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E,F之间距离是10cm,求AB,CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】变形与求值
(1)通分:
(2)求值: ,其中x=1,y=﹣
(3)不改变分式的值,变形使分式 的分子与分母的最高次项的系数是正数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.

(1)该商家购进的第一批衬衫是多少件?

(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y4x32+7,开口_____,对称轴为_____,顶点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:

名称及图形
几何点数
层数

三角形数

正方形数

五边形数

六边形数

第一层几何点数

1

1

1

1

第二层几何点数

2

3

4

5

第三层几何点数

3

5

7

9

第六层几何点数

第n层几何点数

请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

(1)求抛物线的解析式a,b,c;

(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;

(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在求出点M坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

(1)求抛物线的函数表达式;

(2)求直线BC的函数表达式;

(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.

①当线段PQ 时,求tan∠CED的值;

②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.

(参考公式:抛物线的顶点坐标是

查看答案和解析>>

同步练习册答案