精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,D是AB边上的一点,BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=数学公式,求CB的长;
(2)过D作∠CDB的平分线DF交CB于F,若线段AC沿着AB方向平移,当点A移到点D时,判断线段AC的中点E能否移到DF上,并说明理由.

解:(1)∵∠A=∠B=30°,
∴∠ACB=120°,
又∠ACD=30°,
∴∠DCB=90°,
∵BD=
∴CB=BD•cos30°=

(2)AC的中点E能移到DF上.
∵∠CDB=∠A+∠DCA,∠A=∠DCA,
∴∠CDB=2∠A,又DF平分∠CDB,
∴∠CDF=∠FDB=∠A,
∴DF∥AC,
∴△BDF∽△BAC,
=
∵BD>AD,
=,>
∴DF>AC,
过E作EE′∥AD交DF于E′,
则四边形AEE′D为平行四边形,
则DE′=DE,
由于DF>AC=AE=DE′,
所以说E′在线段DF上.
分析:(1)求CB的长,依据已知条件去做;利用外角性质得,∠BDC=∠A+∠ACD=60°,△BCD中,∠BCD=180°-30°-60°=90°,BD=,CB=BD•cos30°=
(2)AC的中点E能移到DF上,则DF>AC根据题中条件证明△BDF∽△BAC,则有=,BD>AD,=,DF>AC.从而说明所以说E′在线段DF上.
点评:考查相似三角形的判定,解直角三角形,平行四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案