【题目】已知二次函数的图象如图所示,有下列个结论:
①;②;③;④;⑤(的实数);⑥
其中正确的结论有( )
A. 3个 B. 4个 C. 5个 D. 6个
【答案】D
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①∵该抛物线开口方向向下,
∴a<0.
∵抛物线对称轴方程x=->0,
∴<0,∴a、b异号,∴b>0;
∵抛物线与y轴交与正半轴,∴c>0,
∴abc<0;故①正确;
②根据抛物线的对称性知,当x=3时,y<0,即9a+3b+c<0;故②正确;
③∵对称轴方程x=-=1,∴b=-2a,
∵当x=4时,y<0,
∴16a+4b+c=16a-8a+c=8a+c<0,故③正确;
④∵b=-2a,
∴=-a,
∴9a+3b+c=-b+c<0,
∴2c<3b.故④正确;
⑤x=m对应的函数值为y=am2+bm+c,
x=1对应的函数值为y=a+b+c,又x=1时函数取得最大值,
∴a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),
故⑤正确.
⑥∵抛物线与x轴有两个不同的交点,∴b2-4ac>0.故⑥正确;
综上所述,正确的有6个.
故选:D.
科目:初中数学 来源: 题型:
【题目】某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
(1)求购买一个甲种足球、一个乙种足球各需多少元;
(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一次函数y=x+6,下列结论错误的是( )
A. 函数值随自变量增大而增大 B. 函数图像与轴正方向成45°角
C. 函数图像不经过第四象限 D. 函数图像与轴交点坐标是(0,6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数图象过点,顶点为,则结论:①;②时,函数的最大值是;③;④;⑤.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,锐角,,点是边上的一点,以为边作,使,.
(1)过点作交于点,连接(如图①)
①请直接写出与的数量关系;
②试判断四边形的形状,并证明;
(2)若,过点作交于点,连接(如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com