精英家教网 > 初中数学 > 题目详情
6.已知菱形的一条对角线为6cm,面积为30cm2,则菱形的周长是4$\sqrt{34}$cm.

分析 设菱形的另一条对角线长为a,利用菱形的面积公式得到$\frac{1}{2}$•a•6=30,解得a=10,然后利用菱形的两条对角线互相垂直和勾股定理计算出菱形的边长,从而得到菱形的周长.

解答 解:设菱形的另一条对角线长为a,
则$\frac{1}{2}$•a•6=30,解得a=10,
所以菱形的边长=$\sqrt{{3}^{2}+{5}^{2}}$=$\sqrt{34}$,
所以菱形的周长为4$\sqrt{34}$.
故答案为4$\sqrt{34}$.

点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.已知x1,x2是一元二次方程4kx2-4kx+k+2=0的两个实数根.是否存在实数k,使(2x1-x2)(x1-2x2)=-$\frac{3}{2}$成立?若存在,求出k的值;若不存在,请您说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,正方形ABCD的两个顶点A,D分别在x轴和y轴上,CE⊥y轴于点E,OA=2,∠ODA=30°.若反比例函数y=$\frac{k}{x}$的图象过CE的中点F,则k的值为2$\sqrt{3}$+6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知两点P1(1,y1),P2(5,y2)在反比例函数y=$\frac{5}{x}$的图象上,下列结论正确的是(  )
A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.二次函数y=2x2-2x+m(0<m<$\frac{1}{2}$),如果当x=a时,y<0,那么当x=a-1时,函数值y的取值范围为(  )
A.y<0B.0<y<mC.m<y<m+4D.y>m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1).
(1)求抛物线的表达式;
(2)若-1≤x≤3,试求y的取值范围;
(3)若M(n2-4n+6,y1)和N(-n2+n+$\frac{7}{4}$,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(  )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为AD=BE,AD⊥BE.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为(  )
A.5B.6C.8D.12

查看答案和解析>>

同步练习册答案