精英家教网 > 初中数学 > 题目详情
如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).

求(1)抛物线的解析式;
(2)两盏景观灯P1、P2之间的水平距离.
(1)y=(0≤x≤10);(2)5米.

试题分析:(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;
(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是他们的距离.
试题解析:
(1)抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1)
设抛物线的解析式是y=a(x-5)2+5
把(0,1)代入y=a(x-5)2+5得a=-
∴y=-(x-5)2+5=(0≤x≤10)
(2)由已知得两景观灯的纵坐标都是4
∴4=-(x-5)2+5
(x-5)2=1,解得x1=,x2=
∴两景观灯间的距离为5米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个小家电定价增加元,每售出一个小家电可获得的利润是多少元?(用含的代数式表示)
(2)当定价增加多少元时,商店获得利润6000元 ?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.

(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.

(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象可能是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正三角形ABC的边长为3cm,动点P从点A出发,以每秒的速度,沿A→B→C的方向运动,到达点C时停止.设运动时间为(秒),=PC2,则关于的函数图象大致为(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(  )
A.a>0B.3是方程ax²+bx+c=0的一个根
C.a+b+c=0D.当x<1时,y随x的增大而减小

查看答案和解析>>

同步练习册答案