【题目】根据表中的信息判断,下列语句中正确的是
( )
A.=1.59
B.235的算术平方根比15.3小
C.只有3个正整数n满足
D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣ x2+bx+e与x轴交于点A(﹣3,0)、点B(9,0),与y轴交于点C,顶点为D,连接AD、DB,点P为线段AD上一动点.
(1)求抛物线的解析式;
(2)如图1,过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;
(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,直接写出△PMN为等腰三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察图中给出的信息,回答下列问题:
(1)一本笔记本与一支中性笔分别是多少元?
(2)某学校给参加体育比赛获一等奖的10名学生发笔记本,给获二等奖的20名学生发中性笔,现有两个超市在搞促销活动,A超市规定:这两种商品都打八折;B超市规定:每买一个笔记本送一支中性笔,另外购买的中性笔按原价卖.该学校选择哪家超市购买更合算,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明:
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.
证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α( )
∵DE平分∠BDC( )
∴∠BDC= ( ),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)
∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=( ),∴AB∥CD( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为_____度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,3 ),反比例函数y= 的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:材料一:对于任意的非零实数和正实数,如果满足是整数,则称是的一个“整商系数”, 例如:时 ,则是的一个“整商系数”;时, ,则也是的一个“整商系数”;
结论:一个非零实数有无数个整商系数,其中最小的一个整商系数记为,例如: .
材料二:对于一元二次方程中,两根有如下关系:, 应用:
(1)若实数满足,求的取值范围;
(2)关于的方程的两个根分别为,且满足, 则的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
A,B两种型号车的进货和销售价格表:
A型车 | B型车 | |
进货价格(元/辆) | 1100 | 1400 |
销售价格(元/辆) | 今年的销售价格 | 2400 |
(1)求今年6月份A型车每辆销售价多少元;
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com