【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,点M是边AB的中点,连结CM,点P从点C出发,以1cm/s的速度沿CB运动到点B停止,以PC为边作正方形PCDE,点D落在线段AC上.设点P的运动时间为t(s).
(1)当t=时,点E落在△MBC的边上;
(2)以E为圆心,1cm为半径作圆E,则当t=时,圆E与直线AB或直线CM相切.
【答案】
(1)
(2) ; ;5
【解析】解:(1)如图1,∵四边形PCDE是正方形,
∴DP∥AC,
∴ = ,
即 = ,
解得t= ;(2)如图2,当点E在△ABC的内部时,圆E与直线AB相切,EF⊥
AB,且EF=1时,
连接AE、BE、CE,
∵∠ACB=90°,AC=8,BC=6,
∴AB=10,
×AB×EF+ + ×BC×EP= ×AC×BC,
×10×1+ ×8×t+ ×6×t= ×8×6,
解得t= ;
如图3,当点E在△ABC的外部时,圆E与直线AB相切,EG⊥AB,且EG=1时,
∵∠EGH=∠BPH,∠EHG=∠BHP,
∴∠GEH=∠PBH,
∴cos∠GEH=cos∠ABC= = ,又EG=1,
∴EH= ,
∵ = ,∴HP= ,
则 + =t,
解得t= ;
如图4,当圆E与直线CM相切时,EN=1,
作MR∥BC,则MR= BC=3,CR= AC=4,
∵点M是边AB的中点,
∴CM= AB=5,
tan∠ACM= = ,
∴ = ,CD=t,
则QD= t,EQ= t,
∵∠NEQ=∠ACM,
∴ = = ,
解得t=5.
科目:初中数学 来源: 题型:
【题目】将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+ 的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 3 | … |
y | … | ﹣3 | 1 | 3 | 1 | … |
则下列判断正确的是( )
A.抛物线开口向上
B.抛物线与y轴交于负半轴
C.当x=4时,y>0
D.方程ax2+bx+c=0的正根在3与4之间
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y= 的图象交斜边OB于点Q,
(1)当Q为OB中点时,AP:PB=
(2)若P为AB的三等分点,当△AOQ的面积为 时,k的值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα= ,tan ,以O为原点,OA所在直线为x轴建立直角坐标系.
(1)求点P的坐标;
(2)水面上升1m,水面宽多少( 取1.41,结果精确到0.1m)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=1,BC= ,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.
请根据以上信息,完成下列问题:
(1)本次调查的样本容量是 ;
(2)某位同学被抽中的概率是 ;
(3)据此估计全校最喜爱篮球运动的学生人数约有 名;
(4)将条形统计图补充完整.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com