【题目】如图,抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,与y轴交于点C,点A,顶点D的坐标分别为A(﹣1,0),D(1,m).
(1)当OB=OC时,直接写出抛物线的解析式;
(2)直线CD必经过某一定点,请你分析理由并求出该定点坐标;
(3)点P为直线CD上一点,当以点P,A,B为顶点的三角形是等腰直角三角形时,求m的值.
【答案】(1)y=﹣x2+2x+3;(2)直线CD必经过定点(﹣3,0);(3)以点P,A,B为顶点的三角形是等腰直角三角形时,m的值为2或或8.
【解析】
(1)由点A,顶点D的坐标分别为A(﹣1,0),D(1,m),可得B点坐标,又OB=OC,可得抛物线解析式为y=﹣x2+2x+3;
(2)由抛物线顶点D的坐标分别为(1,m),可得b=﹣2a,由A(﹣1,0)在抛物线上,可得c=﹣3a,可得直线CD的解析式为y=﹣ax﹣3a=﹣a(x+3),可得答案;
(3)分 ∠PAB=90°、∠PBA=90°、∠APB=90°三种情况讨论可得m的值.
(1)点A,顶点D的坐标分别为A(﹣1,0),D(1,m),
∴B(3,0),
∴OB=3,
∵OB=OC,
∴C(0,3),
设抛物线解析式为y=a(x+1)(x﹣3),∴a×1×(﹣3)=3,
∴a=﹣1,
∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)∵抛物线顶点D的坐标分别为(1,m),
∴﹣=1,
∴b=﹣2a,
∴抛物线的解析式为y=ax2﹣2ax+c,
∵A(﹣1,0)在抛物线上,
∴a+2a+c=0,
∴c=﹣3a,
∴抛物线的解析式为y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴m=﹣4a,
∴D(1,﹣4a),C(0,﹣3a),
∴直线CD的解析式为y=﹣ax﹣3a=﹣a(x+3),
令x+3=0,
即:x=﹣3时,y=0,
∴直线CD必经过定点(﹣3,0);
(3)A(﹣1,0),B(3,0),
∴AB=4,
当∠PAB=90°时,PA=AB,
∵P(﹣1,﹣2a),
∴PA=﹣2a,
∴﹣2a=4,
∴a=﹣2,
∴m=﹣4a=8
当∠PBA=90°时,PB=AB,
∵P(3,﹣6a),∴PB=﹣6a,
∴﹣6a=4,
∴a=﹣,
∴m=﹣4a=,
当∠APB=90°时,PA=PB,
∵P(1,﹣4a),
∴m=﹣4a=AB=2,
即:以点P,A,B为顶点的三角形是等腰直角三角形时,m的值为2或或8.
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.
(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;
(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;
(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).
(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2.
(2)直接写出点B1、B2坐标.
(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O 的直径为 4,AB 是⊙O 的弦,∠AOB=120°,点 P 在⊙O 上,若点 P到直线 AB 的距离为 1,则∠PAB 的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形 ABCD 内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:
(1)保留作图痕迹,写出作法,写明答案;
(2)证明你的作法的正确性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com