【题目】如图,已知四边形 ABCD 内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:
(1)保留作图痕迹,写出作法,写明答案;
(2)证明你的作法的正确性.
科目:初中数学 来源: 题型:
【题目】如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)当出发 时,点P和点Q之间的距离是10cm;
(2)逆向发散:当运动时间为2s时,P、Q两点的距离为 cm;当运动时间为4s时,P、Q两点的距离为 cm;
(3)探索发现:如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连接AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,与y轴交于点C,点A,顶点D的坐标分别为A(﹣1,0),D(1,m).
(1)当OB=OC时,直接写出抛物线的解析式;
(2)直线CD必经过某一定点,请你分析理由并求出该定点坐标;
(3)点P为直线CD上一点,当以点P,A,B为顶点的三角形是等腰直角三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.
(1)求证:BE=CF;
(2)若∠E=40°,求∠AGB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小时,则∠AMN+∠ANM的度数是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形 OABC 在图 1 中的直角坐标系中,且OC在 y 轴上,OA∥BC,A、B两点的坐标分别为 A(18,0),B(12,8),动点 P、Q分别从 O、B两点出发,点 P以每秒2个单位的速度沿 OA 向终点 A 运动,点 Q 以每秒1个单位的速度沿BC向 C运动,当点 P停止运动时,点 Q 同时停止运动.动点 P、Q 运动时间为 t(单位:秒).
(1)当 t 为何值时,四边形 PABQ 是平行四边形,请写出推理过程;
(2)如图 2,线段 OB、PQ 相交于点 D,过点 D 作 DE∥OA,交 AB 于点 E,射线 QE 交 x 轴于点 F,PF=AO.当 t 为何值时,△PQF 是等腰三角形?请写出推理过程;
(3)如图 3,过 B 作 BG⊥OA 于点 G,过点 A 作 AT⊥x 轴于点 A,延长 CB 交 AT于点 T.将点 G 折叠,折痕交边 AG、BG 于点 M、N,使得点 G 折叠后落在AT 边上的点为 G′,求 AG′的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,设D为锐角△ABC内一点,∠ADB=∠ACB+90°.
(1)求证:∠CAD+∠CBD=90°;
(2)如图2,过点B作BE⊥BD,BE=BD,连接EC,若ACBD=ADBC,
①求证:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是_____km.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com