【题目】如图1,设D为锐角△ABC内一点,∠ADB=∠ACB+90°.
(1)求证:∠CAD+∠CBD=90°;
(2)如图2,过点B作BE⊥BD,BE=BD,连接EC,若ACBD=ADBC,
①求证:△ACD∽△BCE;
②求的值.
【答案】(1)详见解析;(2)①详见解析;②=.
【解析】
(1)如图1,延长CD交AB于E,根据三角形外角的性质得到∠ADE=∠CAD+∠ACD,∠BDE=∠CBD+∠BCD,结合已知条件∠ADB=∠ACB+90°.即可证明.
(2)①∠CAD+∠CBD=90°,∠CBD+∠CBE=90°,根据同角的余角相等即可得到∠CAD=∠CBE,根据ACBD=ADBC,BD=BE,即可得到根据相似三角形的判定方法即可判定△ACD∽△BCE;
②连接DE,根据BE⊥BD,BE=BD,得到△BDE是等腰直角三角形,根据等腰直角三角形的性质得到分别判定△ACD∽△BCE,△ACB∽△DCE,根据相似三角形的性质得到则
证明:(1)如图1,延长CD交AB于E,
∵∠ADE=∠CAD+∠ACD,
∠BDE=∠CBD+∠BCD,
∴∠ADB=∠ADE+∠BDE=∠CAD+∠CBD+∠ACB,
∵∠ADB=∠ACB+90°.
∴∠CAD+∠CBD=90°;
(2)①如图2,∵∠CAD+∠CBD=90°,∠CBD+∠CBE=90°,
∴∠CAD=∠CBE,
∵ACBD=ADBC,BD=BE,
∴
∴△ACD∽△BCE;
②如图2,连接DE,
∵BE⊥BD,BE=BD,
∴△BDE是等腰直角三角形,
∴
∵△ACD∽△BCE,
∴∠ACD=∠BCE,
∴∠ACB=∠DCE,
∵
∴△ACB∽△DCE,
∴
∴
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形 ABCD 内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:
(1)保留作图痕迹,写出作法,写明答案;
(2)证明你的作法的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→矩形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A、B、C都是格点每个小方格的顶点叫格点,其中,,.
外接圆的圆心坐标是______;
外接圆的半径是______;
已知与点D、E、F都是格点成位似图形,则位似中心M的坐标是______;
请在网格图中的空白处画一个格点,使∽,且相似比为:1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com