精英家教网 > 初中数学 > 题目详情

【题目】如图1,设D为锐角△ABC内一点,∠ADB=∠ACB+90°.

(1)求证:∠CAD+∠CBD=90°;

(2)如图2,过点BBE⊥BD,BE=BD,连接EC,若ACBD=ADBC,

求证:△ACD∽△BCE;

的值.

【答案】(1)详见解析;(2)①详见解析;②=.

【解析】

(1)如图1,延长CDABE,根据三角形外角的性质得到∠ADE=CAD+ACD,BDE=CBD+BCD,结合已知条件∠ADB=ACB+90°.即可证明.

(2)①∠CAD+CBD=90°,CBD+CBE=90°,根据同角的余角相等即可得到∠CAD=CBE,根据ACBD=ADBC,BD=BE,即可得到根据相似三角形的判定方法即可判定ACD∽△BCE;

②连接DE,根据BEBD,BE=BD,得到BDE是等腰直角三角形,根据等腰直角三角形的性质得到分别判定ACD∽△BCE,ACB∽△DCE,根据相似三角形的性质得到

证明:(1)如图1,延长CDABE,

∵∠ADE=CAD+ACD,

BDE=CBD+BCD,

∴∠ADB=ADE+BDE=CAD+CBD+ACB,

∵∠ADB=ACB+90°.

∴∠CAD+CBD=90°;

(2)①如图2,∵∠CAD+CBD=90°,CBD+CBE=90°,

∴∠CAD=CBE,

ACBD=ADBC,BD=BE,

∴△ACD∽△BCE;

②如图2,连接DE,

BEBD,BE=BD,

∴△BDE是等腰直角三角形,

∵△ACD∽△BCE,

∴∠ACD=BCE,

∴∠ACB=DCE,

∴△ACB∽△DCE,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形 ABCD 内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:

(1)保留作图痕迹,写出作法,写明答案;

(2)证明你的作法的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,平行四边形ABCD对角线ACBD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是(  )

A.平行四边形→矩形→平行四边形→菱形→平行四边形

B.平行四边形→矩形→平行四边形→正方形→平行四边形

C.平行四边形→菱形→平行四边形→矩形→平行四边形

D.平行四边形→矩形→菱形→正方形→平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示

(1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在半径为1的⊙O中,弦AB=,AC=,那么∠BAC=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;

(2)求证:四边形BFDE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:

(1)出租车的速度为100千米/时;

(2)客车的速度为60千米/时;

(3)两车相遇时,客车行驶了3.75时;

(4)相遇时,出租车离甲地的路程为225千米.

其中正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A、B、C都是格点每个小方格的顶点叫格点,其中

外接圆的圆心坐标是______;

外接圆的半径是______;

已知D、E、F都是格点成位似图形,则位似中心M的坐标是______;

请在网格图中的空白处画一个格点,使,且相似比为:1.

查看答案和解析>>

同步练习册答案