精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为1,A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状:
(2)试探究线段PA、PB、PC之间的数量关系,并证明你的结论.

【答案】
(1)等边三角形
(2)解:在PC上截取PD=AP,如图,

又∵∠APC=60°,

∴△APD是等边三角形,

∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.

又∵∠APB=∠APC+∠BPC=120°,

∴∠ADC=∠APB,

在△APB和△ADC中,

∴△APB≌△ADC(AAS),

∴BP=CD,

又∵PD=AP,

∴CP=BP+AP.


【解析】解:(1)△ABC是等边三角形. 证明如下:在⊙O中
∵∠BAC与∠CPB是 所对的圆周角,∠ABC与∠APC是 所对的圆周角,
∴∠BAC=∠CPB,∠ABC=∠APC,
又∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
所以答案是:等边三角形;
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.

(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;

(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;

(3)在上述条件下,直接写出它们在行驶过程中相遇时的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育商店购进一批甲、乙两种足球,已知3个甲种足球的进价与2个乙种足球的进价的和为142元,2个甲种足球的进价与4个乙种足球的进价的和为164元.
(1)求每个甲、乙两种足球的进价分别是多少?
(2)如果购进甲种足球超过10个,超出部分可以享受7折优惠.商场决定在甲、乙两种足球选购其中一种,且数量超过10个,试帮助体育商场判断购进哪种足球省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中, A=80 ABCACD的平分线交于点A1,得A1 A1BCA1CD的平分线相交于点A2,得A2;……; A7BCA7CD的平分线相交于点A8,得A8,则A8的度数为()

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两种方法证明三角形的外角和等于360°”.

已知:如图BAECBFACDABC的三个外角.

求证:∠BAECBFACD=360°.

证法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

请把证法1补充完整并用不同的方法完成证法2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF; ①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

同步练习册答案