【题目】A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.
(1)【探究】 若客车、出租车距B城的距离分别为y1、y2 , 写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.
(2)【发现】 设点C是A城与B城的中点,
(Ⅰ)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?
(Ⅱ)若两车扣相距100千米时,求时间t.
(3)【决策】 己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:
方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);
方案二:乘坐客车返回城.
试通过计算,分析小王选择哪种方式能更快到达B城?
【答案】
(1)解:由已知,得y1=﹣80t+600,
令y1=0,即﹣80t+600=0,解得t= ,
故y1=﹣80t+600(0≤t≤ ).
y2=100t,
令y2=600,即100t=600,解得t=6,
故y2=100t(0≤t≤6).
当y1=200时,即200=﹣80t+600,解得t=5,
当t=5时,y2=100×5=500.
故当y1=200千米时y2的値为500.
(2)解:(Ⅰ)∵100>60,
∴出租车先到达C.
客车到达C点需要的时间:600﹣80t1= ,解得t1= ;
出租车到达C点需要的时间:100t2= ,解得t2=3.
﹣3= (小时).
所以出租车到达C后再经过 小时,客车会到达C.
(Ⅱ)两车相距100千米,分两种情况:
①y1﹣y2=100,即600﹣80t﹣100t=100,
解得:t= ;
②y2﹣y1=100,即100t﹣(600﹣80t)=100,
解得:t= .
综上可知:两车相距100千米时,时间t为 或 小时.
(3)解:两车相遇,即80t+100t=600,解得t= ,
此时AD=80× = (千米),BD=600﹣ = (千米).
方案一:t1=( +600)÷100= (小时);
方案二:t2= ÷80= (小时).
∵t1>t2,
∴方案二更快
【解析】探究:根据路程=速度×时间,即可得出y1、y2关于t的函数关系式,根据关系式算出y1=200千米时的时间t,将t代入y2的解析式中即可得出结论;发现:(Ⅰ)根据出租车的速度大于客车的速度可得出出租车先到达C点,套用(1)中的函数关系式,令y=300即可分别算出时间t1和t2 , 二者做差即可得出结论;(2)两车相距100千米,分两种情况考虑,解关于t的一元一次方程即可得出结论;决策:根据时间=路程÷速度和,算出到达点D的时间,再根据路程=速度×时间算出AD、BD的长度,结合时间=路程÷速度,即可求出两种方案各需的时间,两者进行比较即可得出结论.
科目:初中数学 来源: 题型:
【题目】阅读下面材料: 小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).
请回答:求∠ACE的度数,AC的长.
参考小腾思考问题的方法,解决问题:
如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数的图象经过点E,G两点,则k的值为 ______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于反比例函数y=的下列说法正确的是( )
① 该函数的图象在第二、四象限;
② A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;
③ 当x>2时,则y>-2;
④ 若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.
A. ① ③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com