【题目】下列运算正确的是( )
A. 4m﹣m=3B. a3﹣a2=aC. 2xy﹣yx=xyD. a2b﹣ab2=0
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.
(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.
(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH∥EP,交CD于点H,且∠1=∠2.
(1)求证:AB∥CD;
(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK∥AB,则∠BEP与∠EPF之间有何数量关系,并证明你的结论;
(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,连接CF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图(2),线段CF,BD所在直线的位置关系为______,线段CF,BD的数量关系为________;
②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2019年起,长春市开始了城市轨道交通第三期建设,在建设规划中未来长春市城市轨道交通总长度将达到460000米,460000这个数字用科学记数法表示为( )
A. 4.6×104B. 46×104C. 4.6×105D. 4.6×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】青岛“最美地铁线”连接崂山和即墨的地铁11号线全长约58km,数据58km用科学记数法可表示为( )m.
A. 0.58×105B. 58×104C. 5.8×104D. 5.8×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A. 同旁内角互补 B. 三角形的一个外角等于它的两个内角之和
C. 直角三角形两锐角互余 D. 三角形的一个外角大于内角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com