精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.
(1)若函数y=x2+m的图象过点C,求这个函数的解析式;并判断其函数图象是否过A点.
(2)若将(1)中的函数图象先向右平移1个单位,再向上平移2个单位,直接写出平移后函数的解析式和顶点坐标.

【答案】
(1)解:由题意得A(1,1),C(﹣1,﹣1),

∵函数y=x2+m的图象过点C,

∴﹣1=1+m,

解得m=﹣2,

∴此函数的解析式为y=x2﹣2,

把A(1,1)代入y=x2﹣2的左右两边,

左边=1,右边=﹣1,左≠右,

∴其函数图象不过A点


(2)解:∵将抛物线y=x2﹣2向上平移2个单位再向右平移1个单位,

∴平移后的抛物线的解析式为:y=(x﹣1)2﹣2+2.

即y=(x﹣1)2

则平移后的抛物线的顶点坐标为:(1,0)


【解析】(1)根据题意A(1,1),C(﹣1,﹣1),代入y=x2+m根据待定系数法即可求得解析式,把A的坐标代入即可判断;(2)直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出顶点坐标.
【考点精析】利用二次函数图象的平移对题目进行判断即可得到答案,需要熟知平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠ABC=45°,AHBC于点H,点DAH上的一点,且DH=HC,连接BD并延长BDAC于点E,连接EH.

(1)请补全图形;

(2)求证:△ABE是直角三角形;

(3)若BE=a,CE=b,求出SCEH:SBEH的值(用含有a,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为4m,AB=12m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为5m,则DE的长为m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1 , 并直接写出C1点的坐标;
(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2 , 并直接写出C2点的坐标;
(3)作出△ABC关于原点O成中心对称的△A3B3C3 , 并直接写出B3的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画出函数的图象,利用图象求解下列问题:

(1)求方程的解;

(2)求不等式的解集;

(3)若,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC中,∠CAB=90°,AC=AB,点D、EBC上的两点,且∠DAE=45°,ADCADF关于直线AD对称.

(1)求证:AEF≌△AEB;

(2)DFE=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为3的等边三角形,BDC是等腰三角形,且BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则AMN的周长为

查看答案和解析>>

同步练习册答案