精英家教网 > 初中数学 > 题目详情

函数y=中自变量x的取值范围是 


x1 

【考点】函数自变量的取值范围.

【分析】根据被开方数大于等于0列式计算即可得解.

【解答】解:由题意得,1﹣x≥0,

解得x≤1.

故答案为:x≤1.

【点评】本题考查了函数自变量的范围,一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,下列能判定AB∥CD的条件有(  )个.

(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.

A.1       B.2       C.3       D.4

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是  

查看答案和解析>>

科目:初中数学 来源: 题型:


初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 560 名学生;

(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 54 度;

(3)请将频数分布直方图补充完整;

(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,A(1,4),B(3,2),点C是直线y=﹣4x+20上一动点,若OC恰好平分四边形OACB的面积,则C点坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:


菱形具有而矩形不一定具有的性质是(  )

A.对角线互相垂直     B.对角线相等

C.对角线互相平分     D.对角互补

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.

(1)求过A、B、C三点的抛物线的解析式;

(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;

(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由;

(4)设点M是x轴上的动点,试问:在平面直角坐标系中,是否存在点N,使得以点A、B、M、N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(  )

A.(,1)     B.(1,﹣)  C.(2,﹣2)       D.(2,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.

(1)求菱形ABCD的周长;

(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;

(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案