分析 过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2$\sqrt{3}$,根据勾股定理得AC=4,所以AG=4-2$\sqrt{3}$,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.
解答 解:过点F作FG⊥AC于点G,如图所示,
在△BCE和△GCF中,
$\left\{\begin{array}{l}{∠FGC=∠EBC=90°}\\{∠ACF=∠BCE}\\{CE=CF}\end{array}\right.$,
∴△BCE≌△GCF(AAS),
∴CG=BC=2$\sqrt{3}$,
∵AC=$\sqrt{A{B}^{2+}B{C}^{2}}$=4,
∴AG=4-2$\sqrt{3}$,
∵△AGF∽△CBA
∴$\frac{AG}{CB}=\frac{AF}{CA}=\frac{GF}{AB}$,
∴AF=$\frac{4(4-2\sqrt{3})}{2\sqrt{3}}$=$\frac{8\sqrt{3}-12}{3}$,
FG=$\frac{2(4-2\sqrt{3})}{2\sqrt{3}}$=$\frac{4\sqrt{3}-6}{3}$,
∴AE=2-$\frac{4\sqrt{3}-6}{3}$=$\frac{12-4\sqrt{3}}{3}$,
∴AE+AF=$\frac{12-4\sqrt{3}}{3}$+$\frac{8\sqrt{3}-12}{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.
点评 本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 13 | B. | $\frac{15}{2}$ | C. | $\frac{27}{2}$ | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com