分析 (1)根据平行四边形的性质可证明△ABE≌△CDF,则可求得AE=CF;
(2)由平行四边形的性质结合角平分线的定义可求得∠EDC=∠CED,则可求得CE的长,进一步可求得BE的长.
解答 (1)证明:
∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,
∴∠B=∠CDF,
在△ABE和△CDF中
$\left\{\begin{array}{l}{∠BAE=∠CDF}\\{AB=CD}\\{∠B=∠CDF}\end{array}\right.$
∴△ABE≌△CDF(ASA),
∴AE=CF;
(2)解:
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠ADE=∠CED,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠CDE=∠CED,
∴CD=CE=15,
∵BC=AD=24,
∴BE=BC-CE=24-15=9.
点评 本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4π-8 | B. | 6π-8 | C. | 8π-8 | D. | 10π-8 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2000米 | B. | 3000米 | C. | 4000米 | D. | 5000米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com