精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数yk0)图象交于AB两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣23).

1)求一次函数和反比例函数解析式.

2)若将点C沿y轴向下平移4个单位长度至点F,连接AFBF,求△ABF的面积.

3)根据图象,直接写出不等式﹣x+b的解集.

【答案】1)y=﹣x+y;(2)12;(3) x<﹣20<x<4.

【解析】

(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得.

1)∵一次函数y=﹣x+b的图象与反比例函数yk≠0)图象交于A(﹣3,2)、B两点,

3=﹣×(﹣2)+bk=﹣2×3=﹣6

bk=﹣6

∴一次函数解析式y=﹣,反比例函数解析式y.

(2)根据题意得:

解得:

SABF×4×(4+2)=12

(3)由图象可得:x<﹣20<x<4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)己知,如图1,ABC是O的内接正三角形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.

(2)如图2,四边形ABCD是O的内接正方形,点P为弧BC上一动点,请探究PA,PB,PC三者之间有何数量关系,并给予证明.

(3)如图3,六边形ABCDEF是O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°65°,点A距地面2.5米,点B距地面10.5.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点P(m,4)在反比例函数y=﹣的图象上,正比例函数的图象经过点P和点Q(6,n).

(1)求正比例函数的解析式;

(2)P、Q两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的三边分别为6cm8cm10cm,则这个三角形内切圆的半径是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),为等腰三角形,点是底边上的一个动点,.

1)用表示四边形的周长为  

2)点运动到什么位置时,四边形是菱形,请说明理由;

3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线与反比例函数k0)的图象交于点A,且点A的横坐标为1,点Bx轴正半轴上一点,且ABOA

1)求反比例函数的解析式;

2)求点B的坐标;

3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OAOB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线(k为常数).

(1)若抛物线经过点(1,k2),求k的值;

(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;

(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.

查看答案和解析>>

同步练习册答案