13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=x2-2x-3ºÍÖ±Ïßy=x-3¾­¹ýµãA¡¢B£¬µãPÊÇÖ±ÏßABÉϵ͝µã£¬¹ýµãP×÷xÖáµÄ´¹Ïß½»Å×ÎïÏßÓÚµãM£¬ÉèµãPµÄºá×ø±êΪt£®
£¨1£©µãA¡¢BµÄ×ø±ê·Ö±ðÊÇ£¨3£¬0£©¡¢£¨0£¬-3£©£¬´Ë½áÂÛ¿ÉÒÔÈçºÎÑéÖ¤£¿ÇëÄã˵³öÁ½ÖÖ·½·¨£¨²»ÓÃд¾ßÌåÖ¤Ã÷¹ý³Ì£©
£¨2£©ÈôµãPÔÚÏß¶ÎABÉÏ£¬Á¬½ÓAM¡¢BM£¬µ±Ïß¶ÎPM×ʱ£¬Çó¡÷ABMµÄÃæ»ý£»
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃÒÔµãP¡¢M¡¢B¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ò»ÖÖ·½·¨ÊÇÁªÁ¢·½³Ì×éÇó½»µã×ø±ê£¬ÁíÒ»ÖÖ·½·¨Êǽ«µãµÄ×ø±ê´úÈë½âÎöʽ¼´¿É£»
£¨2£©Óú¬tµÄʽ×Ó±íʾ³öµãP£¬µãM µÄ×ø±ê£¬Óú¬tµÄʽ×Ó±íʾ³öPMµÄ³¤£¬²¢Çó³öPM×î´óʱtµÄÖµ£¬¸ù¾Ý·Ö¸î·¨Çó³ö¡÷ABMµÄÃæ»ý¼´¿É£»
£¨3£©¸ù¾ÝµãPµÄ²»Í¬Î»Ö㬷ÖÈýÖÖÇé¿öÌÖÂÛ£ºµ±0£¼t¡Ü3ʱ£»µ±t£¾3ʱ£»µ±t£¼0ʱ£»Óú¬tµÄʽ×Ó±íʾÏß¶ÎPMµÄÖµ£¬¸ù¾ÝƽÐÐËıßÐεÄÅж¨·½·¨£¬Ò»×é¶Ô±ßƽÐÐÇÒÏàµÈµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÁîPM=OB£¬Çó³ötµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©·½·¨Ò»£ºÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y={x}^{2}-2x-3}\\{y=x-3}\end{array}\right.$£¬Çó½»µã×ø±ê£»
·½·¨¶þ£º½«µãA£¨3£¬0£©£¬µãB£¨0£¬-3£©·Ö±ð´úÈëÅ×ÎïÏߺÍÖ±ÏߵĽâÎöʽ£¬ÅжϵãA£¬µãBÊÇ·ñÔÚÅ×ÎïÏߺÍÖ±ÏßÉÏ£»
£¨2£©ÓɵãPÔÚÖ±ÏßABy=x-3ÉÏ£¬¿ÉµÃ£ºµ±x=tʱ£¬y=t-3£¬¼´µãP£¨t£¬t-3£©£¬
ÓɵãMÔÚÅ×ÎïÏßy=x2-2x-3ÉÏ£¬¿ÉµÃ£ºµ±x=tʱ£¬y=t2-2t-3£¬¼´µãM£¨t£¬t2-2t-3£©£¬
µ±µãPÔÚÏß¶ÎABÉÏʱ£¬PM=t-3-£¨t2-2t-3£©=t-3-t2+2t+3=-t2+3t=$-£¨t-\frac{3}{2}£©^{2}+\frac{9}{4}$£¬
¡àµ±t=$\frac{3}{2}$ʱ£¬PM×î´ó£¬×î´óֵΪ$\frac{9}{4}$£¬
S¡÷ABM=S¡÷APM+S¡÷BPM=$\frac{1}{2}¡Á\frac{9}{4}¡Á\frac{3}{2}+\frac{1}{2}¡Á\frac{9}{4}¡Á\frac{3}{2}=\frac{27}{8}$£»
£¨3£©´æÔÚ£®
ÀíÓÉ£ºµ±0£¼t¡Ü3ʱ£¬Èçͼ1£¬
ÓÉÌâÒ⣬¿ÉÖª£ºOB¡ÎPM£¬ÒªÊ¹ËıßÐÎOBPMÊÇÆ½ÐÐËıßÐΣ¬ÐèÂú×ãOB=PM¼´¿É£»
ÓÉ£¨2£©¿ÉÖª£¬PMµÄ×î´óֵΪ$\frac{9}{4}$£¬
ËùÒÔPM×ÜСÓÚOB£¬
¡à²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃËıßÐÎOBPMÊÇÆ½ÐÐËıßÐΣ»
µ±t£¾3ʱ£¬Èçͼ2£¬
´Ëʱ£¬PM=t2-2t-3-t+3=t2-3t£¬
ÓÉÌâÒ⣬¿ÉÖª£ºOB¡ÎPM£¬ÒªÊ¹ËıßÐÎOBPMÊÇÆ½ÐÐËıßÐΣ¬ÐèÂú×ãOB=PM¼´¿É£»
¼´t2-3t=3£¬½âµÃ£º${t}_{1}=\frac{3+\sqrt{21}}{2}$£¬${t}_{2}=\frac{3-\sqrt{21}}{2}$£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£»
µ±t£¼0ʱ£¬Èçͼ3£¬
´Ëʱ£¬PM=t2-2t-3-t+3=t2-3t£¬
ÓÉÌâÒ⣬¿ÉÖª£ºOB¡ÎPM£¬ÒªÊ¹ËıßÐÎOBPMÊÇÆ½ÐÐËıßÐΣ¬ÐèÂú×ãOB=PM¼´¿É£»
¼´t2-3t=3£¬½âµÃ£º${t}_{1}=\frac{3+\sqrt{21}}{2}$£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬${t}_{2}=\frac{3-\sqrt{21}}{2}$£»
×ÛÉÏËùÊö£¬µãPµÄºá×ø±êÊÇ$\frac{3+\sqrt{21}}{2}$»ò${t}_{2}=\frac{3-\sqrt{21}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬴ËÌâµÄÄѵ㲻´ó£¬µÚ£¨2£©Ð¡Ì⣬ÄÜÊìÁ·ÔËÓ÷ָÇóÈý½ÇÐεÄÃæ»ýÊǽâÌâµÄ¹Ø¼ü£»µÚ£¨3£©Ð¡Ì⣬Äܹ»Ïëµ½¸ù¾ÝµãPµÄ²»Í¬Î»ÖýøÐзÖÀàÌÖÂÛÊǽâ¾ö´ËÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôÒ»´Îº¯Êýy=kx+bµÄͼÏó¾­¹ý£¨-1£¬1£©£¬£¨0£¬m£©£¬£¨1£¬-5£©Èýµã£¬ÔòmµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®-2C£®0D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ö±Ïßy=kx+b£¨k¡Ù0£©£¬Óë·´±ÈÀýº¯Êýy=$\frac{m}{x}$£¨m¡Ù0£©µÄͼÏó½»ÓÚµÚÒ»ÏóÏÞÄÚµÄA¡¢BÁ½µã£¬ÒÑÖªµãAµÄ×ø±êΪ£¨3£¬4£©£¬OBÓëxÖáÕý°ëÖáµÄ¼Ð½ÇΪ¦Á£¬ÇÒtan¦Á=$\frac{1}{3}$£®
£¨1£©ÇóµãBµÄ×ø±ê£®
£¨2£©Ö±½Óд³öʹ²»µÈʽkx+b-$\frac{m}{x}$£¾0³ÉÁ¢µÄÕýÕûÊýxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁÐʽ×ÓÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨-3£©3=-9B£®$\sqrt{£¨-4£©^{2}}$=-4C£®-|-5|=5D£®£¨$\frac{1}{2}$£©-3=8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¾Ýͳ¼Æ£¬º¼ÖÝÊÐ×¢²áÖ¾Ô¸ÕßÈËÊýÒÑ´ï109ÍòÈË£¬½«109ÍòÈËÓÿÆÑ§¼ÇÊý·¨±íʾӦΪ1.09¡Á106£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÒÑÖª¡ÑOµÄÖܳ¤µÈÓÚ8¦Ðcm£¬ÔòÔ²ÄÚ½ÓÕýÁù±ßÐÎABCDEFµÄ±ßÐľàOMµÄ³¤Îª£¨¡¡¡¡£©
A£®2cmB£®2$\sqrt{3}$cmC£®4cmD£®4$\sqrt{3}$cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ACÊǾØÐÎABCDµÄ¶Ô½ÇÏߣ¬½«¾ØÐÎֽƬÕÛµþ£¬Ê¹µãCÓëµãAÖØºÏ£¬ÇëÔÚͼÖл­³öÕÛºÛ£¬È»ºóÔÙÔÚͼÖл­³ö¾ØÐÎABCDµÄÍâ½ÓÔ²£®£¨Óó߹æ×÷ͼ£¬Ð´³ö½áÂÛ£¬²»Ð´×÷·¨£¬±£Áô×÷ͼºÛ¼££¬²¢°Ñ×÷ͼºÛ¼£ÓúÚɫǩ×ֱʼӺڣ©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬AB=16£¬µãPÊÇABËùÔÚÖ±ÏßÉÏÒ»µã£¬OP=10£¬µãCÊÇ¡ÑOÉÏÒ»µã£¬PC½»¡ÑOÓÚµãD£¬sin¡ÏBPC=$\frac{3}{5}$£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚ?ABCDÖУ¬AD=2AB£¬CM¡ÍAD£¬CN¡ÍAB£¬´¹×ã·Ö±ðΪM¡¢N£¬Á¬½ÓMN£¬ND£®ÔòÏÂÁнáÂÛÒ»¶¨ÕýÈ·µÄÊǢ٢ڢۢܣ®£¨Ç뽫ÐòºÅÔÚÌîÔÚºáÏßÉÏ£©
¢ÙCN=2CM£»
¢Ú¡ÏNAD=¡ÏNCM£»
¢ÛS¡÷NCD=$\frac{1}{2}$SËıßÐÎABCD£»
¢ÜAM2-AN2=3CM2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸