精英家教网 > 初中数学 > 题目详情
15.(1)如图1,OP是∠MON的平分线,请你在图1中画出一对以OP所在直线为对称轴的全等三角形.
(2)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,请判断写出FE与FD之间的数量关系.
(3)如图3,△ABC中,如果∠ACB不是直角,而(2)中的其他条件不变,AE=3,CD=2,求AC的长度.

分析 (1)在∠MON的角平分线上任意取一点A,过点A作∠MON两边的垂线,垂足分别为B,C,则所构成的两个三角形全等,它们关于OP对称;
(2)根据图(1)的作法,在AC上截取CG=CD,证得△CFG≌△CFD(SAS),得出DF=GF;再根据ASA证明△AFG≌△AFE,得EF=FG,故得出EF=FD;
(3)根据图(1)的作法,在AC上截取AG=AE,证得△EAF≌△GAF(SAS),得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG,进而得出AC的长度.

解答 解:(1)如图1所示,△AOB≌△AOC;


 (2)FE与FD之间的数量关系为:DF=EF.
证明:如图2,在AC上截取CG=CD,

∵CE是∠BCA的平分线,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
$\left\{\begin{array}{l}{CG=CD}\\{∠DCF=∠GCF}\\{CF=CF}\end{array}\right.$,
∴△CFG≌△CFD(SAS),
∴DF=GF.
∵∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,
∴∠FAC=$\frac{1}{2}$∠BAC,∠FCA=$\frac{1}{2}$∠ACB,且∠EAF=∠GAF,
∴∠FAC+∠FCA=$\frac{1}{2}$(∠BAC+∠ACB)=$\frac{1}{2}$(180°-∠B)=60°,
∴∠AFC=120°,
∴∠CFD=60°=∠CFG,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
$\left\{\begin{array}{l}{∠AFE=∠AFG}\\{AF=AF}\\{∠EAF=∠GAF}\end{array}\right.$,
∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;

(3)如图3,在AC上截取AG=AE,

同(2)可得,△EAF≌△GAF(SAS),
∴∠EFA=∠GFA.
又由题可知,∠FAC=$\frac{1}{2}$∠BAC,∠FCA=$\frac{1}{2}$∠ACB,
∴∠FAC+∠FCA=$\frac{1}{2}$(∠BAC+∠ACB)=$\frac{1}{2}$(180°-∠B)=60°,
∴∠AFC=180°-(∠FAC+∠FCA)=120°,
∴∠EFA=∠GFA=180°-120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(2)可得,△FDC≌△FGC(ASA),
∴CD=CG,
∴AC=AG+CG=AE+CD=3+2=5.

点评 此题属于三角形综合题,主要考查了全等三角形的判定和性质的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.下列命题的逆命题不正确的是(  )
A.同旁内角互补,两直线平行
B.如果两个角是直角,那么它们相等
C.两个全等三角形的对应边相等
D.如果两个实数的平方相等,那么它们相等

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如表(为所学过的一次函数,反比例函数或二次函数中的一种).
x(亩)20253035
y(元)1800170016001500
(1)请求出每亩获得利润y与x的函数关系式,并写出自变量的取值范围;
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过60亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在四边形ABCD中∠C=55°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△EAF周长最小时,∠EAF的度数为(  )
A.55°B.70°C.125°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:$\frac{x-3}{x-2}$÷(x+2-$\frac{5}{x-2}}$),其中x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
(1)-(3x+y)(x-y)
(2)(4a3b-6a2b2+12ab3)÷2ab
(3)[4365×(-0.25)366-2-3]×(3.14-π)0
(4)20152-2016×2014.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD中,E、F分别是BC、CD的中点,连结AE、BF交于点H.试判断AE与BF的数量关系和位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图所示的几何体是将一个长方体截去一部分后得到的,小明画出了该几何体的三种视图,其中正确的是(  )
A.主视图B.左视图C.俯视图D.主视图和左视图

查看答案和解析>>

同步练习册答案