精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①图中有4对全等三角形;②若将△DEF沿EF折叠,则点D不一定落在AC上;③BD=BF;④S四边形DFOE=S△AOF,上述结论中正确的个数是(  )
A.1个B.2个C.3个D.4个
C

试题分析:
解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;
②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)
∵OB⊥AC,
∴∠AOB=∠COB=90°,
在Rt△AOB和Rt△COB中,
∵ AB=BC BO=BO  ,
∴Rt△AOB≌Rt△COB(HL),
则全等三角形共有4对,故②正确;
③∵AB=CB,BO⊥AC,把△ABC折叠,
∴∠ABO=∠CBO=45°,∠FBD=∠DEF,
∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;
④∵OB⊥AC,且AB=CB,
∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,
由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,
又∵∠BFD为三角形ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
易得∠BDF=180°-45°-67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,故④正确;
⑤连接CF,
∵△AOF和△COF等底同高,
∴S△AOF=S△COF,
∵∠AEF=∠ACD=45°,
∴EF∥CD,
∴S△EFD=S△EFC,
∴S四边形DFOE=S△COF,
∴S四边形DFOE=S△AOF,
故⑤正确.
故答案为:C
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的对角线相交于点O,DE∥AC,CE//BD.求证:四边形OCED是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,BF=DE.求证:四边形AFCE是平行四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题1:如图1,在四边形ABCD中,AD∥BC,∠A=∠D,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;
问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明.

解:(1)猜想:____________________
(2)猜想:____________________
证明:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=       °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知直线,相邻两条平行直线间的距离都是2,如果正方形ABCD的四个顶点分别在四条直线上,则正方形边长的值为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和3,则正方形的边长是         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.

(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案