精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在△ABP中,CBP边上一点,∠PAC=PBA,O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;

(2)过点CCFAD,垂足为点F,延长CFAB于点G,若AG·AB=12,求AC的长;(3)在满足(2)的条件下,若AFFD=12,GF=1,求⊙O的半径及sinACE的值.

【答案】(1)详见解析;(2);(3).

【解析】分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=PBA得出∠CAD+PAC=90°进而得出答案;

(2)首先得出CAG∽△BAC,进而得出,求出AC即可;

(3)先求出AF的长,根据勾股定理得:,即可得出sinADB= ,利用∠ACE=ACB=ADB,求出即可.

本题解析:(1)证明:连接CD,

AD是⊙O的直径,∴∠ACD=90° ∴∠CAD+ADC=90°。

又∵∠PAC=PBA,ADC=PBA, ∴∠PAC=ADC。∴∠CAD+PAC=90° PAOA。

又∵AD是⊙O的直径,∴PA是⊙O的切线。

(2)由(1)知,PAAD,又∵CFAD,CFPA。∴∠GCA=PAC。

又∵∠PAC=PBA,∴∠GCA=PBA。

又∵∠CAG=BAC,∴△CAG∽△BAC。 ,即AC2=AGAB。

AGAB=12,AC2=48。AC=

(3)设AF=x, AF:FD=1:2,FD=2x。AD=AF+FD=3x。

RtACD中,∵CFAD,AC2=AFAD,即3x2=48。

解得;x=4。 AF=4,AD=12。∴⊙O半径为6。

RtAFG中,∵AF=4,GF=2,

∴根据勾股定理得:

由(2)知,AGAB=48

连接BD,AD是⊙O的直径,∴∠ABD=90°。

RtABD中,∵sinADB= ,AD=12,sinADB=

∵∠ACE=ACB=ADB,sinACE=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.

(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?

(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)23 (2 0183)0;    (2)99269×71

(3) ÷(3xy); (4)(2x)(2x)

(5)(abc)(abc); (6)(3x2y1)2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师家买了一套新房其结构如图所示(单位:m)他打算将卧室铺上木地板其余部分铺上地砖

(1)木地板和地砖分别需要多少平方米

(2)如果地砖的价格为每平方米x木地板的价格为每平方米3x那么王老师需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=mx2-(m+5)x+5.

(1)求证:它的图象与x轴必有交点,且过x轴上一定点;

(2)这条抛物线与x轴交于两点A(x1,0),B(x2,0),0<x1<x2,(1) 中定点的直线L;y=x+ky轴于点D,AB=4,圆心在直线L上的⊙MAB两点,求抛物线和直线的关系式,AB与弧围成的弓形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABC中,∠B <C,AD,AE分别是ABC的高和角平分线。

(1)若∠B=30°,C=50°,试确定∠DAE的度数;

(2)试写出∠DAE,B,C的数量关系,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:

(2a+b)(a+b)=2a2+3ab+b2,就可以用图的面积关系来说明.

(1)根据图写出一个等式:        ;

(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线L;y=ax2+bx+c(其中abc都不等于0), 它的顶点P的坐标是,y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PML的伴随直线.

(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:

伴随抛物线的关系式_________________

伴随直线的关系式___________________

(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3y=-x-3, 则这条抛物线的关系是___________:

(3)求抛物线L:y=ax2+bx+c(其中abc都不等于0) 的伴随抛物线和伴随直线的关系式;

(4)若抛物线Lx轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,AB=CD,请求出abc应满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,D、E△ABCBC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明.

查看答案和解析>>

同步练习册答案