【题目】先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.
(1)根据图②写出一个等式: ;
(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.
科目:初中数学 来源: 题型:
【题目】下列命题中,是真命题的是( )
①面积相等的两个直角三角形全等;
②对角线互相垂直的四边形是正方形;
③将抛物线 向左平移4个单位,再向上平移1个单位可得到抛物线 ;
④两圆的半径R、r分别是方程x2-3x+2=0 的两根,且圆心距d=3, 则两圆外切.
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发商计划将一批海产品由A地运往B地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:
运输工具 | 运输费单价/ (元/吨·千米) | 冷藏费单价/ (元/吨·小时) | 过路费/元 | 装卸及管理费/元 |
汽 车 | 2 | 5 | 200 | 0 |
火 车 | 1.8 | 5 | 0 | 1600 |
注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.
(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1、y2与x之间的函数关系式.
(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用分解因式法解方程:
(1)4x2-12x=0;(2)25x2-9=0;(3)3y2-5y=0;(4);
(5)4(x+3)2-(x-2)2=0 ;(6)4y2+12y+9=0;(7);
(8)4(x-3) 2-x(x-3)=0;(9)(x-3)2-2(x-3)+1=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标;
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)某公交公司有A,B型两种客车,它们的载客量和租金如下表:
红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
(2)若要保证租车费用不超过1900元,求x的最大值;
(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.
(1)观察图形填写下表:
链条节数(节) | 2 | 3 | 4 |
链条长度(cm) |
|
|
|
(2)如果x节链条的总长度是y,求y与x之间的关系式;
(3)如果一辆某种型号自行车的链条(安装前)由80节这样的链条组成,那么这根链条完成链接(安装到自行车上)后,总长度是多少cm?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
关于,的二元一次方程有一组整数解则方程的全部整数解可表示为(为整数).
问题:求方程的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为则全部整数解可表示为(为整数).
因为解得.因为为整数,所以0或.
所以该方程的正整数解为和.
请你参考小明的解题方法, 完成下面的问题:
(1)方程的全部正整数解为______________;
(2)方程的全部整数解表示为: (为整数);
(3)方程的正整数解有多少组? 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份)。
(1)小华购物450元,他获得购物券的概率是多少?
(2)小丽购物600元,那么:
① 她获得50元购物券的概率是多少?
② 她获得100元以上(包括100元)购物券的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com