精英家教网 > 初中数学 > 题目详情
8.二次函数y=(x-3)2-2的图象上的顶点坐标是(3,-2).

分析 直接根据二次函数的顶点式进行解答即可.

解答 解:∵二次函数的顶点式为y=(x-3)2-2,
∴其顶点坐标为:(3,-2).
故答案为:(3,-2).

点评 本题考查的是二次函数的性质,熟知二次函数的顶点坐标公式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.用不等式表示:
(1)a与b的和小于1:a+b<1;(2)x的3倍与2的差大于0:3x-2>0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若不等式(a-1)x≤-3的解集为x≥$\frac{3}{1-a}$,则a的取值范围是(  )
A.a>1B.a<1C.a>0D.a≤1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,梯形ABCD中,AD∥BC,∠B=90°,AD=20cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以2cm/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3cm/秒的速度向B点运动.已知P、Q两点分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.假设运动时间为t秒,问:
(1)是否存在某一时刻t,使四边形PQCD是平行四边形?存在,求出t值;不存在请说明理由.
(2)是否存在某一时刻t,使四边形PQCD是直角梯形?存在,求出t值;不存在请说明理由.
(3)在某个时刻,四边形PQCD可能是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.$\sqrt{16}$的平方根是±2,算术平方根是2,立方根是$\root{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知?ABCD的周长为64cm,BC边上的高AE=6cm,CD边上的高AF=10cm,求S?ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)$\frac{2}{{\sqrt{2}-1}}+\sqrt{18}-4\sqrt{\frac{1}{2}}$
(2)$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})-{(\sqrt{3}-\sqrt{2})^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知,三个实数a,b,c在数轴上的点如图所示,|a-b|+|c-a|-|c+b|的值可能是(  )
A.2aB.2bC.2cD.-2a

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为($\sqrt{3}$,2),顶点C、D在x轴上,且OC=OD.
(1)当⊙P的半径为4时,
①在P1(0,-3),P2(2$\sqrt{3}$,3),P3(-2$\sqrt{3}$,1)中可以成为矩形ABCD的“等距圆”的圆心的是P1(0,-3),P2(2$\sqrt{3}$,3);
②如果点P在直线$y=-\frac{\sqrt{3}}{3}x+1$上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;
(2)已知点P在y上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.

查看答案和解析>>

同步练习册答案