【题目】如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s). ![]()
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)当t为多少时,四边形ACFE是菱形.
【答案】
(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS)
(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,
则此时的时间t=6÷1=6(s).
故答案为:6s.
【解析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.
【考点精析】通过灵活运用等边三角形的性质和菱形的判定方法,掌握等边三角形的三个角都相等并且每个角都是60°;任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形即可以解答此题.
科目:初中数学 来源: 题型:
【题目】下列四个命题中,是真命题的是( )
A. 相等的角是对顶角
B. 两条直线被第三条直线所截,同位角相等
C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等
D. 在同一平面内,垂直于同一条直线的两条直线互相平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列计算中正确的是( )
A.(﹣3x3)2=9x5
B.x(3x﹣2)=3x2﹣2x
C.x2(3x3﹣2)=3x6﹣2x2
D.x(x3﹣x2+1)=x4﹣x3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、B在数轴上分别表示实数
、
,A、B两点之间的距离记作AB.
当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=
=
.
![]()
当A、B两点都不在原点时:
(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB-OA=
=
=
=![]()
(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB-OA=
=
=
=![]()
(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=
=
=![]()
回答下列问题:
(1)综上所述,数轴上A、B两点之间的距离AB= .
(2)数轴上表示2和-4的两点A和B之间的距离AB= .
(3)数轴上表示
和-2的两点A和B之间的距离AB= ,如果AB=2,则
的值为 .
(4)若代数式
有最小值,则最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com