精英家教网 > 初中数学 > 题目详情

【题目】菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.
(1)如图1,当∠ABC=90°时,△OEF的形状是

(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;

(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且 = 时,直接写出线段CE的长.

【答案】
(1)等腰直角三角形
(2)△OEF是等边三角形;

证明:如图2,过O点作OG⊥BC于G,作OH⊥CD于H,

∴∠OGE=∠OGC=∠OHC=90°,

∵四边形ABCD是菱形,

∴CA平分∠BCD,∠ABC+BCD=180°,

∴OG=OH,∠BCD=180°﹣60°=120°,

∵∠GOH+∠OGC+∠BCD+∠OHC=360°,

∴∠GOH+∠BCD=180°,

∴∠MON+∠BCD=180°,

∴∠GOH=∠EOF=60°,

∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,

∴∠EOG=∠FOH,

在△EOG与△FOH中,

∴△EOG≌△FOH(ASA),

∴OE=OF,

∴△OEF是等边三角形


(3)证明:如图3,

∵菱形ABCD中,∠ABC=90°,

∴四边形ABCD是正方形,

=

过O点作O′G⊥BC于G,作O′H⊥CD于H,

∴∠O′GC=∠O′HC=∠BCD=90°,

∴四边形O′GCH是矩形,

∴O′G∥AB,O′H∥AD,

= = =

∵AB=BC=CD=AD=4,

∴O′G=O′H=3,

∴四边形O′GCH是正方形,

∴GC=O′G=3,∠GO′H=90°

∵∠MO′N+∠BCD=180°,

∴∠EO′F=90°,

∴∠EO′F=∠GO′H=90°,

∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,

∴∠EO′G=∠FO′H,

在△EO′G与△FO′H中,

∴△EO′G≌△FO′H(ASA),

∴O′E=O′F,

∴△O′EF是等腰直角三角形;

∵S正方形ABCD=4×4=16, =

∴SO′EF=18,

∵SO′EF= O′E2

∴O′E=6,

在RT△O′EG中,EG= = =3

∴CE=CG+EG=3+3

根据对称性可知,当∠M′ON′旋转到如图所示位置时,

CE′=E′G﹣CG=3 ﹣3.

综上可得,线段CE的长为3+3 或3 ﹣3.


【解析】(1)△OEF是等腰直角三角形;

证明:如图1,

∵菱形ABCD中,∠ABC=90°,

∴四边形ABCD是正方形,

∴OB=OC,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,

∴∠BOE+∠COE=90°,

∵∠MON+∠BCD=180°,

∴∠MON=90°,

∴∠COF+∠COE=90°,

∴∠BOE=∠COF,

在△BOE与△COF中,

∴△BOE≌△COF(ASA),

∴OE=OF,

∴△OEF是等腰直角三角形;
(2)△OEF是等边三角形;

证明:如图2,过O点作OG⊥BC于G,作OH⊥CD于H,

∴∠OGE=∠OGC=∠OHC=90°,

∵四边形ABCD是菱形,

∴CA平分∠BCD,∠ABC+BCD=180°,

∴OG=OH,∠BCD=180°﹣60°=120°,

∵∠GOH+∠OGC+∠BCD+∠OHC=360°,

∴∠GOH+∠BCD=180°,

∴∠MON+∠BCD=180°,

∴∠GOH=∠EOF=60°,

∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,

∴∠EOG=∠FOH,

在△EOG与△FOH中,

∴△EOG≌△FOH(ASA),

∴OE=OF,

∴△OEF是等边三角形
(3)证明:如图3,

∵菱形ABCD中,∠ABC=90°,

∴四边形ABCD是正方形,

=

过O点作O′G⊥BC于G,作O′H⊥CD于H,

∴∠O′GC=∠O′HC=∠BCD=90°,

∴四边形O′GCH是矩形,

∴O′G∥AB,O′H∥AD,

= = =

∵AB=BC=CD=AD=4,

∴O′G=O′H=3,

∴四边形O′GCH是正方形,

∴GC=O′G=3,∠GO′H=90°

∵∠MO′N+∠BCD=180°,

∴∠EO′F=90°,

∴∠EO′F=∠GO′H=90°,

∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,

∴∠EO′G=∠FO′H,

在△EO′G与△FO′H中,

∴△EO′G≌△FO′H(ASA),

∴O′E=O′F,

∴△O′EF是等腰直角三角形;

∵S正方形ABCD=4×4=16, =

∴SO′EF=18,

∵SO′EF= O′E2

∴O′E=6,

在RT△O′EG中,EG= = =3

∴CE=CG+EG=3+3

根据对称性可知,当∠M′ON′旋转到如图所示位置时,

CE′=E′G﹣CG=3 ﹣3.

综上可得,线段CE的长为3+3 或3 ﹣3.

所以答案是:(1)等腰直角三角形;(2)见解答过程;(3)3+3 或3 ﹣3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是(
A.25°
B.40°
C.50°
D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1: 的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD的高度(精确到0.1m,测角仪的高度忽略不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何证明:

1)已知:如图1BDCE分别是△ABC的外角平分线,过点AAFBDAGCE,垂足分别是FG,连接FG,延长AFAG,与直线BC相交.求证:FGAB+BC+AC).

2)若BDCE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2008年奥运会期间,一辆大巴车在一条南北方向的道路上来回运送旅客,某一天早晨该车从A地出发,晚上到达B地,预定向北为正方向,当天行驶记录如下(单位:千米)

+18-9+7-14-6+13-6-8

请你根据计算回答下列问题:

1B地在A地何方?相距多少千米?

2)该车这一天共行驶多少千米?

3)若该车每千米耗油0.4升,这一天共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线L:y=﹣ (x+t)(x﹣t+4)与x轴只有一个交点,则抛物线L与x轴的交点坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校2000名学生每周去图书馆时间的情况,随机调查了其中的100名学生,对这100名学生每周去图书馆的时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周去图书馆的时间在6≤x<8小时的学生人数占20%.根据以上信息及统计图解答下列问题:
(1)本次调查属于调查,样本容量是
(2)请补全频数分布直方图中空缺的部分;
(3)若从这100名学生中随机抽取1名学生,求抽取的这个学生每周去图书馆的时间恰好在8﹣10小时的概率;
(4)估计全校学生每周去图书馆的时间不少于6小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b-2|=0,A,B 之间的距离记为|AB|.请回答问题:

(1)直接写出a,b, |AB|的值. a= ,b = , |AB|=

(2)设点P在数轴上对应的数为x,当|PA|-|PB|=2时,求x的值

(3)若点P在点A的左侧,M、N分别是PA、PB的中点.当点P在点A的左侧移动时,式子|PN|-|PM|的值是否发生改变?若不变,请求出其值;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则 符合这一结果的实验可能是( )

A. 掷一枚正六面体的骰子,出现6点的概率

B. 掷一枚硬币,出现正面朝上的概率

C. 任意写出一个整数,能被2整除的概率

D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率

查看答案和解析>>

同步练习册答案