精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠B45°, AMBC,垂足为M

(1)如图1,若AB=4BC7,求AC的长;

(2)如图2, D是线段AM上一点,MD=MC,点E是△ABC外一点,CE=CA连接ED并延长交BC于点F,且∠BDF=∠CEF

求证①ACBD

BFCF

【答案】(1)5;(2)见解析.

【解析】

(1)先由AM=BM=ABcos45°=4可得CM=3,再由勾股定理可得AC的长;
(2)①由AMBC,得∠AMC=BMD=90°,再由三角形全等可证AC=BD

②延长EF到点G,BGEC,可得∠G=CEF,证得BG=CE,再证BFG≌△CFE可得BF=CF.

(1)解:∵AMBC,

∴∠AMB=90°.

∵∠B=45°,

∴∠BAM=90°-45°=45°.

BM=AM.

AB=

BM=4.

CM=BC-BM=3.

∵∠AMC=90°,

AC=

(2)①∵AMBC,

∴∠AMC=BMD=90°.

MC=MD,AM=BM,

∴△AMC≌△BMD.

AC=BD.

②延长EF,过BBGECEF延长线于点G.

BGCE,

∴∠G=CEF.

∵∠BDF=CEF,

∴∠G=BDF.

BG=BD.

AC=CE,AC=BD,

BG=CE.

∵∠BFG=CFE,

∴△BGF≌△CEF.

BF=CF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)请用两种不同的方法求图b中阴影部分的面积:
方法1: ____ (只列式,不化简)
方法2: ______ (只列式,不化简)
(2)观察图b,写出代数式(m+n2,(m-n2mn之间的等量关系: ______ ;
(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,

则(a-b2= ______ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).

(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2

(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.

请在坐标轴上找一点C,使△ABC为等腰三角形.

写出一个满足条件的在x轴上的点的坐标:   

写出一个满足条件的在y轴上的点的坐标:   ,这样的点有   个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技有限公司准备购进AB两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:

(1)求A、B两种机器人每个的进价;

(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求证:△AEH≌△CGF;
(2)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,CFABF,BEACE,CFBE交于点D.有下列结论:

①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④CFAB的垂直平分线.以上结论正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,E是 的中点,连接BE、CE,则∠ABE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.
(1)类比研究
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究,完成表.

四边形

对称性

对角线

平行
四边形

两组对边分别平行,两组对边分别相等.

两组对角
分别相等.

对角线互相平分.

等腰
梯形

轴对称图形,过平行的一组对边中点的直线是它的对称轴.

一组对边平行,另一组对边相等.


(2)演绎论证
证明等腰梯形有关角和对角线的性质.
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是对角线.
求证:
证明:
揭示关系
我们可以用图来揭示三角形和一些特殊三角形之间的关系.

(3)请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标为,作轴,轴,垂足分别为,点为线段的中点,点从点出发,在线段上沿运动,当时,点的坐标为________.

查看答案和解析>>

同步练习册答案