精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程有实数根.

(1)m的值;

(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求的最大值和最小值.

【答案】11;(2;(3)最大值为21,最小值为﹣4

【解析】

试题(1)由题意△≥0,列出不等式,解不等式即可;

2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;

3)首先确定n的取值范围,利用二次函数的性质即可解决问题;

试题解析:(1)对于一元二次方程,△=(m+122m2+1)=﹣m2+2m1=﹣(m12,∵方程有实数根,∴﹣(m120,∴m=1

2)由(1)可知= ,图象如图所示:

平移后的解析式为,即

3)由消去y得到,由题意△≥0,∴364n80,∴n7,∵nmm=1,∴1n7,令y′=n24n=(n224,∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21,∴的最大值为21,最小值为﹣4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).

(1)求该抛物线的解析式;

(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;

(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;

(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:三角形纸片ABC中,∠C=90°AB=12BC=6B′是边AC上一点.将三角形纸片折叠,使点B与点B′重合,折痕与BCAB分别相交于EF.设BE=x

1)若x=4,求B′C的长;

2)当AFB′是直角三角形时,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x22x+m1=0有两个实数根x1,x2

1求m的取值范围;

2当x12+x22=6x1x2时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们在学习实数时画了这样一个图,即以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:

(1)线段OA的长度是多少?(要求写出求解过程)

(2)这个图形的目的是为了说明什么?

(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)

A.数形结合 B.代入 C.换元 D.归纳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知抛物线y=﹣x2+2x+3与x轴交于AB两点,点M在这条抛物线上,点Py轴上,如果四边形ABMP是平行四边形,则点M的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCADE中,∠BAC=∠DAE90°ABACADAE,点CDE三点在同一直线上.

1)求证:BAD≌△CAE

2)猜想BDCE有何特殊位置关系,并说明理由.

查看答案和解析>>

同步练习册答案