【题目】如图,在平面直角坐标系中,函数y=2x+8的图象分别交x轴、y轴于A、B两点,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,求出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是平行四边形?若存在,请直接写出所有点H的坐标;若不存在,请说明理由.
【答案】(1)y=x+4;(2)点P的坐标为(-12,-8)或(4,8);(3)存在,(-4,-4),(-4,4)或(4,12).
【解析】
(1)通过函数y=2x+8求出A、M两点坐标,由两点坐标求出直线AM的函数解析式;
(2)设出P点坐标,按照等量关系“S△ABP=S△AOB”即可求出;
(3)设点H的坐标为(m,n),然后分三种情况进行讨论即可.
(1)当x=0时,y=2x+8=8,
∴点B的坐标为(0,8);
当y=0时,2x+8=0,
解得:x=-4,
∴点A的坐标为(-4,0).
∵点M为线段OB的中点,
∴点M的坐标为(0,4).
设直线AM的函数解析式为y=kx+b(k≠0),
将A(-4,0),B(0,4)代入y=kx+b,得:,
解得:,
∴直线AM的函数解析式为y=x+4.
(2)设点P的坐标为(x,x+4),
∵S△ABP=S△AOB,
∴BM|xP-xA|=OAOB,即×4×|x+4|=×4×8,
解得:x1=-12,x2=4,
∴点P的坐标为(-12,-8)或(4,8).
(3)存在, (-4,-4),(-4,4)或(4,12).
设点H的坐标为(m,n).
分三种情况考虑(如图所示):
①当AM为对角线时,,
解得:,
∴点H1的坐标为(-4,-4);
②当AB为对角线时, ,
解得:,
∴点H2的坐标为(-4,4);
③当BM为对角线时,,
解得:,
∴点H3的坐标为(4,12).
综上所述:在坐标平面内存在点H,使以A、B、M、H为顶点的四边形是平行四边形,点H的坐标为(-4,-4),(-4,4)或(4,12).
科目:初中数学 来源: 题型:
【题目】正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
(1)四边形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,菱形OABC的OC边落在x轴上,∠AOC=60°,OA=60.若菱形OABC内部(边界及顶点除外)的一格点P(x,y)满足:x2﹣y2=90x﹣90y,就称格点P为“好点”,则菱形OABC内部“好点”的个数为( )
(注:所谓“格点”,是指在平面直角坐标系中横、纵坐标均为整数的点.)
A. 145 B. 146 C. 147 D. 148
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.
(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方时什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他由离家最远的地方返回的平均速度是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.
(1)求反比例函数和直线的解析式;
(2)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com