精英家教网 > 初中数学 > 题目详情

【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标为x1、x2,其中﹣2<x1<﹣1、0<x2<1下列结论:①4a﹣2b+c<02a﹣b<0abc>0b2+8a>4ac正确的结论是_____

【答案】①②③④

【解析】

①根据x=-2时的函数值解答即可;
②根据函数图象的对称轴在y轴的左侧解答;
③根据函数图象开口向下判断出a<0,再根据对称轴判断出b<0,根据函数图象与y轴的交点判断出c>0,然后相乘即可得解;
④根据顶点纵坐标值大于x=-1时的函数值列式整理即可得解.

解:∵x=﹣2,y<0,

∴4a﹣2b+c<0,所以①正确;

∵抛物线的对称轴为直线x=﹣ >﹣1,

a<0,

∴b>2a,即2a﹣b<0,所以②正确;

∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴在y轴左侧,

∴b<0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc>0,所以③正确;

∵抛物线的顶点的纵坐标为

>2,

∴4ac﹣b2<8a,

∴b2+8a>4ac,所以④正确.

故答案为①②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知RtABCACB=90°AC=BCD是线段AB上的一点不与AB重合).过点BBECD垂足为E将线段CE绕点C顺时针旋转得到线段CF连结EFBCE度数为.

1补全图形

试用含的代数式表示CDA

2 的大小.

3直接写出线段ABBECF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等边三角形OAB的顶点A的坐标为(5,0),顶点B在第一象限,函数y=(x>0)的图象分别交边OA、AB于点C、D.若OC=2AD,则k=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB与函数yx>0)的图象交于点Am,2),B(2,n).过点AAC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使ODOC,且ACD的面积是6,连接BC

(1)求mkn的值;

(2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段ABy轴于点E.

(1)求点E的坐标;

(2)求抛物线的函数解析式;

(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点Ny轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣1,2)、B(3,6)在抛物线y=ax2+bx

(1)求抛物线的解析式;

(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点Gx轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FHAE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE∽△ABC,则点E的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初二开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:

1)根据图示填写下表:

班级

中位数(分)

众数(分)

平均数(分)

爱国班

85

求知班

100

85

2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?

3)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次数学课外实践活动中,要求测量山坡前某建筑物的高度AB.小刚在D处用高1.5m的测角仪CD,测得该建筑物顶端A的仰角为45°,然后沿倾斜角为30°的山坡向上前进20m到达E,重新安装好测角仪后又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)

查看答案和解析>>

同步练习册答案