精英家教网 > 初中数学 > 题目详情

(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D,旋转角为

(1)当点D′恰好落在EF边上时,则旋转角α的值为________度;

(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;

(3)小长方形CEFD绕点C顺时针旋转一周的过程中,是否存在旋转角α,使△DCD′与△CBD′全等?若能,直接写出旋转角α的值;若不能,说明理由.

(1)30;(2)证明见试题解析;(3)能.

【解析】

试题分析:(1)根据旋转的性质得到CD′的长,在Rt△CED′中,CD′=2,CE=1,得到∠CD′E=30°,然后根据平行线的性质即可得到∠α的度数;

(2)由G为BC中点可得CG=CE,再根据旋转的性质得∠D′CE′=∠DCE=90°,CE=CE′=CG,则∠GCD′=∠DCE′=90°+α,再根据“SAS”可判断△GCD′≌△E′CD,得到GD′=E′D;

(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD′与△DCD′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD′与△DCD′为钝角三角形时,可计算出α=135°,当△BCD′与△DCD′为锐角三角形时,可计算得到α=315°.

试题解析:(1)∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;

(2)∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∵CD′=CD,∠GCD′=∠DCE′,CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;

(3)能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,

当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°,则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.

考点:1.旋转的性质;2.全等三角形的判定与性质;3.矩形的性质;4.正方形的性质.

考点分析: 考点1:图形的平移与旋转 定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。 平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等) 平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。 平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年黑龙江省大庆市九年级上学期期末检测数学试卷(解析版) 题型:选择题

如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )

A.2cm B.3cm C.4cm D.5cm

查看答案和解析>>

科目:初中数学 来源:2014-2015学年河北省邯郸市九年级第一次模拟考试数学试卷(解析版) 题型:选择题

某篮球队12名队员的年龄如下表所示:

年龄(岁)

18

19

20

21

人数

5

4

1

2

则这12名队员年龄的众数和中位数分别是( )

A.18,19 B.18,19.5 C.5,4 D.5, 4.5

查看答案和解析>>

科目:初中数学 来源:2014-2015学年河北省邯郸市九年级第一次模拟考试数学试卷(解析版) 题型:选择题

如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=60°,则∠2的度数为( )

A.20° B.60° C.30° D.45°

查看答案和解析>>

科目:初中数学 来源:2014-2015学年福建省武夷山市九年级上学期期末质量监测数学试卷(解析版) 题型:解答题

(8分)如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图-2的程序移动.

(1)请在图-1中画出光点P经过的路径;

(2)求光点P经过的路径总长(结果保留π).

查看答案和解析>>

科目:初中数学 来源:2014-2015学年福建省武夷山市九年级上学期期末质量监测数学试卷(解析版) 题型:填空题

已知二次函数中,函数与自变量的部分对应值如下表:

-2

-1

0

1

2

-3

-4

-3

0

5

则此二次函数的对称轴为 .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年浙江省台州市九年级上学期第一次月考数学试卷(解析版) 题型:解答题

已知关于的一元二次方程的两个实数根为

(1)求k的取值范围。

(2)是否存在实数可k,使得成立?若存在,请求出k值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年云南省九年级上学期第一次月考数学试卷(解析版) 题型:选择题

用配方法解方程,配方后的方程是( )

A、 B、

C、 D、

查看答案和解析>>

同步练习册答案