精英家教网 > 初中数学 > 题目详情
11.(1)化简:($\frac{1}{x}$-$\frac{1}{y}$)$÷\frac{{x}^{2}-{y}^{2}}{xy}$     
(2)解不等式组:$\left\{\begin{array}{l}{3(x-1)≤4x}\\{3-\frac{3}{2}x≥\frac{1}{2}x+1}\end{array}\right.$.

分析 (1)先算括号里面的,再算除法即可;
(2)分别求出各不等式的解集,再求出其公共解集即可.

解答 解:(1)原式=$\frac{-(x-y)}{xy}$•$\frac{xy}{(x+y)(x-y)}$
=-$\frac{1}{x+y}$;


(2)$\left\{\begin{array}{l}3(x-1)≤4x①\\ 3-\frac{3}{2}x≥\frac{1}{2}x+1②\end{array}\right.$,
解不等式①,得x>-3,
解不等式②,得x≤1,
所以原不等式组的解集为-3<x≤1.

点评 本题考查的是分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数50°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若实数a,b满足a2+3a=2,b2+3b=2,且a≠b,则(1+a2)(1+b2)=(  )
A.18B.12C.9D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.函数y=(m2-m)${x}^{{m}^{2}-3m+1}$是反比例函数,则(  )
A.m≠0B.m≠0且m≠1C.m=2D.m=1或2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在菱形ABCD中,∠A=60°,E、F分别在AB,BC上,若△DEF有一个角为60°,求证:△DEF一定是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0),B(3,0),且与y轴交于点C,点D为顶点,直线CD与x轴交于点E,以DE为腰作等腰Rt△DEF,若点F落在y轴上时a的值为-$\frac{1}{4}$或-$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,⊙D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.
(1)求圆的半径和点D的坐标;
(2)点A的坐标是(2,0),点B的坐标是(8,0),sin∠ACB$\frac{3}{5}$;
(3)求经过C、A、B三点的抛物线解析式;
(3)设抛物线的顶点为F,证明直线FA与⊙D相切.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:(2cos30°-1)0+($\frac{1}{3}$)-1-$\sqrt{(-5)^{2}}$-|-1|
(2)解方程:1+$\frac{5x-4}{x-2}$=$\frac{4x+10}{3x-6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知A,B是抛物线y=$\frac{1}{4}$x2上的两点,且OA⊥OB.(O为原点)
(1)求A,B两点的横坐标之积和纵坐标之积;
(2)问直线AB是否恒过定点,若是,求出定点坐标,并说明理由.
(3)求△AOB面积的最小值;
(4)若抛物线上有一点C(2,1),将OA⊥OB改为CA⊥CB,直线AB是否恒过定点?若是,直接写出定点坐标,不必说明理由.

查看答案和解析>>

同步练习册答案