精英家教网 > 初中数学 > 题目详情
4.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.

分析 (1)先求出点A坐标,再用待定系数法求出抛物线解析式;
(2)先求出S△PCE=S△PBC-S△PBE=-$\frac{3}{8}$(x+1)2+$\frac{3}{2}$,即可求出最大面积;
(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q坐标.

解答 解:(1)∵B(1,0),C(0,3),
∴OB=1,OC=3.
∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
∴OA=OC=3,
∴A(-3,0),
∵点A,B,C在抛物线上,
∴$\left\{\begin{array}{l}{9a-3b+c=0}\\{a+b+c=0}\\{c=9}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$,
∴二次函数的解析式为y=-x2-2x+3,
(2)设点P(x,0),则PB=1-x,
∵A(-3,0),B(1,0),
∴AB=4,
∵C(0,3),
∴OC=3,
∴S△ABC=$\frac{1}{2}$AB×OC=6,
∵PE∥AC,
∴△BPE∽△BAC,
∴$\frac{{S}_{△PBE}}{{S}_{△ACB}}=(\frac{PB}{AB})^{2}$,
∴S△PBE=$\frac{3}{8}$(1-x)2
∴S△PCE=S△PBC-S△PBE=$\frac{1}{2}$PB×OC-$\frac{3}{8}$(1-x)2=$\frac{1}{2}$(1-x)×3-$\frac{3}{8}$(1-x)2=-$\frac{3}{8}$(x+1)2+$\frac{3}{2}$,
当x=-1时,S△PCE的最大值为$\frac{3}{2}$.
(3)∵二次函数的解析式为y=-x2-2x+3=-(x+1)2+4,
∴顶点坐标(-1,4),
∵△OMQ为等腰三角形,OM为底,
∴MQ=OQ,
∴$\sqrt{(x+1)^{2}+(-{x}^{2}-2x+3-4)^{2}}$=$\sqrt{{x}^{2}+(-{x}^{2}-2x+3)^{2}}$,
∴8x2+18x=7=0,
∴x=$\frac{-9±\sqrt{137}}{8}$,
∴y=$\frac{59+\sqrt{137}}{32}$或y=$\frac{59-\sqrt{137}}{32}$,
∴Q($\frac{-9+\sqrt{137}}{8}$,$\frac{59+\sqrt{137}}{32}$),或($\frac{-9-\sqrt{137}}{8}$,$\frac{59-\sqrt{137}}{32}$).

点评 此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算方法,等腰三角形的性质,解本题的关键是确定出抛物线解析式,难点是确定三角形PCE的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列表述正确的是(  )
A.27的立方根是±3B.$\sqrt{16}$的平方根是±4
C.9的算术平方根是3D.立方根等于平方根的数是1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.以下问题,不适合用全面调查的是(  )
A.了解全班同学视力B.旅客上飞机前的安检
C.学校招聘教师,对应聘人员面试D.了解全市中学生每天的零花钱

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若一组数据x1,x2,x3,x4,x5,x6的平均数是2,方差是2,则另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2,3x6-2的平均数和方差分别是(  )
A.2,2B.2,18C.4,6D.4,18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图①,已知△ABC的三个顶点坐标分别为A(-1,0)、B(3,0)、C(0,3),直线BE交y轴正半轴于点E.
(1)求经过A、B、C三点的抛物线解析式及顶点D的坐标;
(2)连接BD、CD,设∠DBO=α,∠EBO=β,若tan (α-β)=1,求点E的坐标;
(3)如图②,在(2)的条件下,动点M从点C出发以每秒$\sqrt{2}$个单位的速度在直线BC上移动(不考虑点M与点C、B重合的情况),点N为抛物线上一点,设点M移动的时间为t秒,在点M移动的过程中,以E、C、M、N四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的t值及点M的个数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列二次根式是最简二次根式的是(  )
A.$\sqrt{16}$B.$\sqrt{1.2}$C.$\sqrt{15}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列计算结果正确的是(  )
A.a3×a4=a12B.a5÷a=a5C.(ab2)=ab6D.(a32=a6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,直线y=kx+b经过点A(0,3),B(1,2),则关于x的不等式0≤kx+b<2x的解集为(  )
A.1<x≤3B.1≤x<3C.x>1D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各式中,计算正确的是(  )
A.$\sqrt{4}$-$\sqrt{3}$=1B.$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$C.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$D.$\sqrt{x}$×$\sqrt{y}$=xy

查看答案和解析>>

同步练习册答案