【题目】(本小题满分7分)完成下列各题:
(1)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.
(2)如图,在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)根据BC∥DF证得∠CBD=∠FDB,利用等角的补角相等证得∠ABC=∠EDF,然后根据AD=EB得到AB=ED,利用AAS证明两三角形全等即可;
(2)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1;然后根据BC=BD+DC即可求得.
试题解析:(1)∵AD=EB,
∴AD-BD=EB-BD,即AB=ED,
又∵BC∥DF,
∴∠CBD=∠FDB
∴∠ABC=∠EDF
在△ABC和△EDF中,
,
∴△ABC≌△EDF,
∴AC=EF;
(2)在Rt△ABD中,∵sinB=,
又∵AD=1,
∴AB=3,
∵BD2=AB2-AD2,
∴BD=.
在Rt△ADC中,∵∠C=45°,
∴CD=AD=1.
∴BC=BD+DC=.
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,= ;
②当α=180°时, = .
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com