【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
【答案】(1)抛物线的解析式为:y=﹣x2+x+2
(2)存在,P1(,4),P2(,),P3(,﹣)
(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).
解得:,
∴抛物线的解析式为:y=﹣x2+x+2;
(2)∵y=﹣x2+x+2,
∴y=﹣(x﹣)2+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=2,
∴DP1=4.
∴P1(,4),P2(,),P3(,﹣);
(3)当y=0时,0=﹣x2+x+2
∴x1=﹣1,x2=4,
∴B(4,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+2.
如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),
∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BDOC+EFCM+EFBN,
=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
=﹣a2+4a+(0≤x≤4).
=﹣(a﹣2)2+
∴a=2时,S四边形CDBF的面积最大=,
∴E(2,1).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径的画弧,分别交BA,BC于点M、N;再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则下列说法中不正确的是()
A. BP是∠ABC的平分线B. AD=BDC. D. CD=BD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB⊥BC,BF=CF,∠C=30°,D是AC的中点,E是CD的中点,连接BE,AF交于G,连接DG.
(1)若E到BC的距离为2,求AB的长;
(2)证明:GD平分∠AGE;
(3)猜想BG,FG,GD,AF的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知为所在平面内一点,且,,,垂足分别为点、,.
(1)如图1,当点在边上时,判断的形状;并证明你的结论;
(2)如图2,当点在内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有 名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个全等直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=8,DH=3,平移距离为4,则阴影部分(即四边形DOCF)的面积为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com