【题目】如图,△ABC中,AB⊥BC,BF=CF,∠C=30°,D是AC的中点,E是CD的中点,连接BE,AF交于G,连接DG.
(1)若E到BC的距离为2,求AB的长;
(2)证明:GD平分∠AGE;
(3)猜想BG,FG,GD,AF的数量关系,并证明.
【答案】(1)AB=8;(2)见解析;(3)AF=GB+GD+GF,见解析.
【解析】
(1)如图1中,作EH⊥BC于H.利用平行线分线段成比例定理即可解决问题;
(2)如图1中,连接BD,DF,DM⊥AF于M,DN⊥BE于N.利用全等三角形的对应边相等,面积相等,根据三角形面积公式即可证明DM=DN;
(3)结论:AF=GB+GD+GF.如图2中,连接BD,DF,在GA上取一点M,使得GM=GD.利用全等三角形的性质证明GA=GB+GD,GE=GD+GF即可解决问题.
(1)如图1中,作EH⊥BC于H.
∵AB⊥BC,EH⊥BC,∴EH∥AB,∴.
∵AD=DC,DE=EC,∴EC:AC=1:4.
∵EH=2,∴,∴AB=8.
(2)如图1中,连接BD,DF,DM⊥AF于M,DN⊥BE于N.
∵∠ABC=90°,AD=DC,∴BD=AD=DC.
∵∠C=30°,∴ABAC=AD=DC.
∵∠BAD=60°,∴△ABD是等边三角形,同法可证△DEF是等边三角形,∴AD=DB,DF=DE,∠ADB=∠EDF=60°,∴∠ADF=∠BDE=120°,∴△ADF≌△BDE(SAS),∴AF=BE,S△ADF=S△BDE,∴AFDM=BEDN,∴DM=DN,∴DG平分∠AGE.
(3)结论:AF=GB+GD+GF.
理由:如图2中,连接BD,DF,在GA上取一点M,使得GM=GD.
∵△ADF≌△△BDE,∴∠DAF=∠DBE,∴∠AGE=∠GBA+∠BAG=∠ABD+∠GBD+∠BAG=∠ABD+∠BAG+∠DAF=120°.
∵DG平分∠AGE,∴∠AGD=∠DGE=∠AGB=∠EGF=60°.
∵GM=GD,∴△DGM是等边三角形,∴DM=DG,∠ADB=∠MDG=60°,∴∠ADM=∠BDG.
∵AD=BD,MD=GD,∴△AMD≌△BDG,∴BG=AM,∴AG=AM+GM=BG+DG,同法可证GE=DG+GF,∴AF=AG+FG=BG+DG+FG.
科目:初中数学 来源: 题型:
【题目】如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(2)能否设计出符合题目要求,且长方形花圃的形状与原长方形空地的形状相似的花圃?若能,求出此时通道的宽;若不能,则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D 为∠BAC 的外角平分线上一点并且满足 BD=CD, 过 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延长线于 F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图象如图所示,它与二次函数的图象交于、两点(其中点在点的左侧),与这个二次函数图象的对称轴交于点.
求点的坐标;
设二次函数图象的顶点为.
①若点与点关于轴对称,且的面积等于,求此二次函数的关系式;
②若,且的面积等于,求此二次函数的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:连接多边形的对角线或在多边形边上(非顶点)取一点或在多边形内部取一点与多边形各顶点的连线,能将多边形分割成若干个小三角形,图1给出了四边形的具体分割方法,分别将四边形分割成了个、个、个小三角形.
(1)请你按照上述方法将图2中的六边形进行分割,并写出每种方法所得到的小三角形的个数为 个、 个, 个
(2)当多边形为边形时,按照上述方法进行分割,写出每种分法所得到的小三角形的个数为 个、 个, 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴相交于、两点,与轴相交于点,点、是二次函数图象上的一对对称点,一次函数的图象过点、.
求点坐标;
求二次函数的解析式;
根据图象直接写出使一次函数值小于二次函数值的的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com