【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
【答案】(1)y=﹣x+4;(2)点C和点D在所求抛物线上;(3)点M的坐标为(,).
【解析】
试题分析:(1)已知了抛物线上A、B点的坐标以及抛物线的对称轴方程,可用待定系数法求出抛物线的解析式.
(2)首先求出AB的长,将A、B的坐标向右平移AB个单位,即可得出C、D的坐标,再代入抛物线的解析式中进行验证即可.
(3)根据C、D的坐标,易求得直线CD的解析式;那么线段MN的长实际是直线BC与抛物线的函数值的差,可将x=t代入两个函数的解析式中,得出的两函数值的差即为l的表达式,由此可求出l、t的函数关系式,根据所得函数的性质即可求出l取最大值时,点M的坐标.
解:(1)∵抛物线y=+bx+c的顶点在直线x=上,
∴可设所求抛物线对应的函数关系式为y=+m
∵点B(0,4)在此抛物线上,
∴4=×+m
∴m=﹣
∴所求函数关系式为:y=﹣=﹣x+4
(2)在Rt△ABO中,OA=3,OB=4,
∴AB==5
∵四边形ABCD是菱形
∴BC=CD=DA=AB=5
∴C、D两点的坐标分别是(5,4)、(2,0);
当x=5时,y=×52﹣×5+4=4
当x=2时,y=×22﹣×2+4=0
∴点C和点D在所求抛物线上;
(3)设直线CD对应的函数关系式为y=kx+b′,
则;
解得:;
∴y=x﹣
∵MN∥y轴,M点的横坐标为t,
∴N点的横坐标也为t;
则yM=﹣t+4,yN=t﹣,
∴l=yN﹣yM=t﹣﹣(﹣t+4)=﹣+t﹣=﹣+
∵﹣<0,
∴当t=时,l最大=,yM=﹣t+4=.
此时点M的坐标为(,).
科目:初中数学 来源: 题型:
【题目】已知函数y=(2m+1)x+m﹣3
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行于直线y=3x﹣3,求m的值;
(3)若函数图象与y轴的交点在y轴的正半轴,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有两人分别骑自行车和摩托车沿着相同的路线从甲地到乙地去,下图反映的是这两个人行驶过程中时间和路程的关系,请根据图象回答 下列问题:
(1)甲地与乙地相距 千米;
(2)摩托车用了 小时到达乙地,摩托车比自行车早到 小时;
(3)摩托车的速度是 千米/小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,结论错误的是( )
A. 直径相等的两个圆是等圆
B. 长度相等的两条弧是等弧
C. 圆中最长的弦是直径
D. 一条弦把圆分成两条弧,这两条弧可能是等弧
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com