分析 由DH与AB平行,得到一对内错角相等,再由一对内错角相等,利用两角相等的三角形相似得到三角形ABC与三角形DHC相似,由相似得比例求出CH的长,由BC+CH求出BH的长,在直角三角形BHD中,利用锐角三角函数定义求出所求式子的值即可.
解答 解:∵DH∥AB,
∴∠BHD=∠ABC=90°,
∵∠ACB=∠DCH,
∴△ABC∽△DHC,
∵AC=3CD,即$\frac{AC}{DC}$=$\frac{1}{3}$,
∴$\frac{AC}{DC}$=$\frac{BC}{HC}$=$\frac{1}{3}$,
又BC=3,
∴CH=1,
∴BH=BC+CH=3+1=4,
在Rt△BHD中,cos∠HBD=$\frac{BH}{BD}$,
∴BDcos∠HBD=BH=4.
点评 此题考查了相似三角形的判定与性质,以及解直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$×3$\sqrt{2}$=3$\sqrt{6}$ | B. | $\sqrt{27}$÷$\sqrt{3}$=3 | C. | 2$\sqrt{3}$+4$\sqrt{2}$=6$\sqrt{5}$ | D. | $\sqrt{(-7)^{2}}$=-7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 格点多边形各边上的 格点的个数 | 格点边多边形内部的 格点个数 | 格点多边形的面积 | |
| 多边形1 | 4 | 1 | 2 |
| 多边形2 | 5 | 2 | ②$\frac{7}{2}$ |
| 多边形3 | 6 | 3 | 5 |
| 多边形4 | ①5 | 4 | $\frac{11}{2}$ |
| 一般格点多边形 | m | n | S |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com